Skip to main content

Advertisement

Log in

Papain Loaded Poly(ε-Caprolactone) Nanoparticles: In-silico and In-Vitro Studies

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Papain is a protease enzyme with therapeutic properties that are very valuable for medical applications. Poly(ε-caprolactone) (PCL) is an ideal polymeric carrier for controlled drug delivery systems due to its low biodegradability and its high biocompatibility. In this study, the three-dimensional structure and action mechanism of papain were investigated by in vitro and in silico experiments using molecular dynamics (MD) and molecular docking methods to elucidate biological functions. The results showed that the size of papain-loaded PCL nanoparticles (NPs) and the polydispersity index (PDI) of the NPs were 242.9 nm and 0.074, respectively. The encapsulation efficiency and loading efficiency were 80.4 and 27.2%, respectively. Human embryonic kidney cells (HEK-293) were used for determining the cytotoxicity of papain-loaded PCL and PCL nanoparticles. The in vitro cell culture showed that nanoparticles are not toxic at low concentrations, while toxicity slightly increases at high concentrations. In silico studies, which were carried out with MD simulations and ADME analysis showed that the strong hydrogen bonds between the ligand and the papain provide stability and indicate the regions in which the interactions occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Liang Y-Y, Zhang L-M (2007) Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan. Biomacromolecules 8(5):1480–1486

    Article  CAS  PubMed  Google Scholar 

  2. Peng J, Han CL, Ling J, Liu CJ, Ding ZT, Cao QE (2018) Selective fluorescence quenching of papain–au nanoclusters by self-polymerization of dopamine. Luminescence 33(1):168–173

    Article  CAS  PubMed  Google Scholar 

  3. Mamboya EAF (2012) Papain, a plant enzyme of biological importance: a review. Am J Biochem Biotechnol 8(2):99–104

    Article  CAS  Google Scholar 

  4. dos Anjos MM, da Silva AA, de Pascoli IC, Mikcha JMG, Machinski M Jr, Peralta RM, de Abreu Filho BA (2016) Antibacterial activity of papain and bromelain on Alicyclobacillus spp. Int J Food Microbiol 216:121–126

    Article  PubMed  CAS  Google Scholar 

  5. Silva CRd, Oliveira MB, Motta ES, Almeida GSd, Varanda LL, Pádula Md, Leitão AC, Caldeira-de-Araújo A (2010) Genotoxic and cytotoxic safety evaluation of papain (Carica papaya L.) using in vitro assays. Biomed Res Int 2010

  6. Xiao Q, Qiu H, Huang S, Huang C, Su W, Hu B, Liu Y (2013) Systematic investigation of interactions between papain and MPA-capped CdTe quantum dots. Mol Biol Rep 40(10):5781–5789

    Article  CAS  PubMed  Google Scholar 

  7. Adebiyi A, Adaikan PG, Prasad R (2002) Papaya (Carica papaya) consumption is unsafe in pregnancy: fact or fable? Scientific evaluation of a common belief in some parts of Asia using a rat model. Br J Nutr 88(2):199–203

    Article  CAS  PubMed  Google Scholar 

  8. Mansfield LE, Bowers CH (1983) Systemic reaction to papain in a nonoccupational setting. J Allergy Clin Immunol 71(4):371–374

    Article  CAS  PubMed  Google Scholar 

  9. Vasconcellos FC, Goulart GA, Beppu MM (2011) Production and characterization of chitosan microparticles containing papain for controlled release applications. Powder Technol 205(1–3):65–70

    Article  CAS  Google Scholar 

  10. Chen Y-Y, Lu Y-H, Ma C-H, Tao W-W, Zhu J-J, Zhang X (2017) A novel elastic liposome for skin delivery of papain and its application on hypertrophic scar. Biomed Pharmacother 87:82–91

    Article  CAS  PubMed  Google Scholar 

  11. Alkilani AZ, McCrudden MT, Donnelly RF (2015) Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 7(4):438–470

    Article  CAS  PubMed  Google Scholar 

  12. Herman A, Herman AP (2015) Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. J Pharm Pharmacol 67(4):473–485

    Article  CAS  PubMed  Google Scholar 

  13. Mout R, Ray M, Tay T, Sasaki K, Yesilbag Tonga G, Rotello VM (2017) General strategy for direct cytosolic protein delivery via protein–nanoparticle co-engineering. ACS Nano 11(6):6416–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maximov V, Reukov V, Vertegel A (2009) Targeted delivery of therapeutic enzymes. J Drug Delivery Sci Technol 19(5):311–320

    Article  CAS  Google Scholar 

  15. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256

    Article  CAS  Google Scholar 

  16. Smith PE, van Gunsteren WF (1993) The viscosity of SPC and SPC/E water at 277 and 300 K. Chem Phys Lett 215(4):315–318

    Article  CAS  Google Scholar 

  17. Fletcher R (2001) Practical methods of optimization, 2nd edn. Wiley, Chichester, 2000. Numerical Algorithms 26 (2):198

  18. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190

    Article  CAS  Google Scholar 

  19. Berendsen HJ, Jv P, van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  20. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  21. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  22. Verlet L (1967) Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98

    Article  CAS  Google Scholar 

  23. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  CAS  Google Scholar 

  24. van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WR, Tironi IG (1996) Biomolecular simulation: the {GROMOS96} manual and user guide

  25. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  26. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein− ligand complexes. J Med Chem 49(21):6177–6196

    Article  CAS  PubMed  Google Scholar 

  27. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Article  CAS  PubMed  Google Scholar 

  28. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  PubMed  Google Scholar 

  29. Tsuge H, Nishimura T, Tada Y, Asao T, Turk D, Turk V, Katunuma N (1999) Inhibition mechanism of cathepsin L-specific inhibitors based on the crystal structure of papain–CLIK148 complex. Biochem Biophys Res Commun 266(2):411–416

    Article  CAS  PubMed  Google Scholar 

  30. Bienert S, Waterhouse A, de Beer TA, Tauriello G, Studer G, Bordoli L, Schwede T (2016) The SWISS-MODEL repository—new features and functionality. Nucleic Acids Res 45(D1):D313–D319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Søndergaard CR, Olsson MH, Rostkowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of p K a values. J Chem Theory Comput 7(7):2284–2295

    Article  PubMed  CAS  Google Scholar 

  32. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234

    Article  PubMed  CAS  Google Scholar 

  33. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL (2015) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296

    Article  PubMed  CAS  Google Scholar 

  34. Hirt RP, de Miguel N, Nakjang S, Dessi D, Liu Y-C, Diaz N, Rappelli P, Acosta-Serrano A, Fiori P-L, Mottram JC (2011) Trichomonas vaginalis pathobiology: new insights from the genome sequence. In: advances in parasitology, vol 77. Elsevier, pp 87-140

  35. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UCM, Besteiro S (2007) Draft genome sequence of the sexually transmitted pathogen trichomonas vaginalis. Science 315(5809):207–212

    Article  PubMed  PubMed Central  Google Scholar 

  36. Setzer MS, Byler KG, Ogungbe IV, Setzer WN (2017) Natural products as new treatment options for trichomoniasis: a molecular docking investigation. Sci Pharm 85(1):5

    Article  CAS  PubMed Central  Google Scholar 

  37. Crane SN, Black WC, Palmer JT, Davis DE, Setti E, Robichaud J, Paquet J, Oballa RM, Bayly CI, McKay DJ (2006) β-Substituted cyclohexanecarboxamide: a nonpeptidic framework for the design of potent inhibitors of cathepsin K. J Med Chem 49(3):1066–1079

    Article  CAS  PubMed  Google Scholar 

  38. Epple R, Urbina HD, Russo R, Liu H, Mason D, Bursulaya B, Tumanut C, Li J, Harris JL (2007) Bicyclic carbamates as inhibitors of papain-like cathepsin proteases. Bioorg Med Chem Lett 17(5):1254–1259

    Article  CAS  PubMed  Google Scholar 

  39. Lipinski C, Lombardo F, Dominy B, Feeney P (1997) Toward minimalistic modeling of oral drug absorption. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  40. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273(2):381–387

    Article  CAS  PubMed  Google Scholar 

  41. Abdelrazek EM, Hezma AM, El-khodary A, Elzayat AM (2016) Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt J Basic Appl Sci 3(1):10–15

    Article  Google Scholar 

  42. Liu K, Kiran E (2008) High-pressure solution blending of poly (ε-caprolactone) with poly (methyl methacrylate) in acetone + carbon dioxide. Polymer 49:1555–1561

    Article  CAS  Google Scholar 

  43. Tang ZG, Black RA, Curran JM, Hunt JA, Rhodes NP, Williams DF (2004) Surface properties and biocompatibility of solvent-cast poly [ε-caprolactone] films. Biomaterials 25(19):4741–4748

    Article  CAS  PubMed  Google Scholar 

  44. Catledge SA, Clem WC, Shrikishen N, Chowdhury S, Stanishevsky AV, Koopman M, Vohra YK (2007) An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomed Mater 2(2):142–150

    Article  CAS  PubMed  Google Scholar 

  45. Goormaghtigh E, Cabiaux V, Ruysschaert JM (1990) Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier‐transform infrared spectroscopy on hydrated films. FEBS J 193(2):409–420

    CAS  Google Scholar 

  46. Vedantham G, Sparks HG, Sane SU, Tzannis S, Przybycien TM (2000) A holistic approach for protein secondary structure estimation from infrared spectra in H2O solutions. Anal Biochem 285(1):33–49

    Article  CAS  PubMed  Google Scholar 

  47. Goossens K, Haelewyn J, Meersman F, De Ley M, Heremans K (2003) Pressure-and temperatureinduced unfolding and aggregation of recombinant human interferon-gamma: a Fourier transform infrared spectroscopy study. Biochem J 370(2):529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ismail AA, Mantsch HH, Wong PT (1992) Aggregation of chymotrypsinogen: portrait by infrared spectroscopy. Biochim Biophys Acta Protein Struct Mol Enzymol 1121(1-2):183–188

    Article  CAS  Google Scholar 

  49. Sharma M, Sharma V, Panda AK, Majumdar DK (2013) Development of enteric submicron particles formulation of α-amylase for oral delivery. Pharm Dev Technol 18(3):560–569

    Article  CAS  PubMed  Google Scholar 

  50. Forato LA, Bernardes-Filho R, Colnago LA (1998) Protein structure in KBr pellets by infrared spectroscopy. Anal Biochem 259(1):136–141

    Article  CAS  PubMed  Google Scholar 

  51. Mahmoud KA, Lam E, Hrapovic S, Luong JH (2013) Preparation of well-dispersed gold/magnetite nanoparticles embedded on cellulose nanocrystals for efficient immobilization of papain enzyme. ACS Appl Mater Interfaces 5(11):4978–4985

    Article  CAS  PubMed  Google Scholar 

  52. Smith BC (1998) Infrared spectral interpretation: a systematic approach. CRC press

  53. Heimowska A, Morawska M, Bocho-Janiszewska A (2017) Biodegradation of poly (ε-caprolactone) in natural water environments. Pol J Chem Technol 19(1):120–126

    Article  CAS  Google Scholar 

  54. López-García J, Lehocký M, Humpolíček P, Sáha P (2014) HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J Funct Biomater 5(2):43–57

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors are very thankful Rita Podzuna for allowing to use the docking program with Schrödinger's Small-Molecule Drug Discory Suite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Budama-Kilinc.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest associated with this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budama-Kilinc, Y., Cakir-Koc, R., Kecel-Gunduz, S. et al. Papain Loaded Poly(ε-Caprolactone) Nanoparticles: In-silico and In-Vitro Studies. J Fluoresc 28, 1127–1142 (2018). https://doi.org/10.1007/s10895-018-2276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2276-6

Keywords

Navigation