Journal of Fluorescence

, Volume 28, Issue 5, pp 1105–1114 | Cite as

Bis-(2-Hydroxybenzylidene)-1H-Pyrazole 3,5-Dicarbohydrazide as a Novel Chemosensor for the Detection of Endogenous Zinc: A Fluorometric Study

  • Krishna Naik
  • Vidyanand Revankar


The study reports synthesis and photophysical studies of a new zinc sensing pyrazole scaffold structurally characterized to be bis(2-hydroxybenzylidene)-1H-pyrazole-3,5-dicarbohydrazide (PHSA). Excitation of the probe at 330 nm results in an emission band at 417 nm which ratiometrically red shifts to 466 nm upon Zn2+ addition in an unprecedented way. The photo induced electron transfer (PET) coupled intramolecular charge transfer (ICT) working for a dual-channel fluorescence emission pathway is observed and studies were supported with density functional theory and NMR titration experiments. The probe exhibited dissociation constant of 1.2156 and detection limit as low as 992 nM. The cytotoxic effects of the probe on 60 tumour cell lines were tested. The intracellular zinc sensing with reversible binding potential is verified with fluorescence microscopy experiment.


Zn2+ sensor ‘Turn on’ sensor PET/ICT Ratiometric Zn sensing Cell imaging 



The instrumental access provided by the USIC and Department of Chemistry, Karnatak University, Dharwad is gratefully acknowledged. The study is supported financial assistance from UGC in the form of Major Research Project [F.No. 37-246/2009(SR) dated 12.01.2010]. The author, KN thanks Mrs. Geeta Pawashe and Mr. Bheemanagouda Patil for useful input in the manuscript. The authors are indebted to National Cancer Institute (NCI) Bethesda, Maryland, USA, for the antitumor studies under the Developmental Therapeutic Program (DTP).

Supplementary material

10895_2018_2273_MOESM1_ESM.docx (36.1 mb)
ESM 1 (DOCX 36932 kb)


  1. 1.
    Chyan W, Zhang DY, Lippard SJ, Radford RJ (2014) Reaction-based fluorescent sensor for investigating mobile Zn2+ in mitochondria of healthy versus cancerous prostate cells. Proc. Natl. Acad. Sci. 111(1):143–148CrossRefPubMedGoogle Scholar
  2. 2.
    Nolan EM, Jaworski J, Racine ME, Sheng M, Lippard SJ (2006) Midrange affinity fluorescent Zn (II) sensors of the Zinpyr family: syntheses, characterization, and biological imaging applications. Inorg. Chem. 45(24):9748–9757CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Nolan EM, Ryu JW, Jaworski J, Feazell RP, Sheng M, Lippard SJ (2006) Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization. J. Am. Chem. Soc. 128(48):15517–15528CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Woodroofe CC, Masalha R, Barnes KR, Frederickson CJ, Lippard SJ (2004) Membrane-permeable and-impermeable sensors of the Zinpyr family and their application to imaging of hippocampal zinc in vivo. Chem. Biol. 11(12):1659–1666CrossRefPubMedGoogle Scholar
  5. 5.
    Helal A, Kim H-S (2009) Thiazole-based chemosensor: synthesis and ratiometric fluorescence sensing of zinc. Tetrahedron Lett. 50(39):5510–5515CrossRefGoogle Scholar
  6. 6.
    Yang C-C, Tian Y, Chen CY, Jen AKY, Chen WC (2007) A novel Benzoxazole-containing poly(N-isopropylacrylamide) copolymer as a multifunctional sensing material. Macromol. Rapid Commun. 28(7):894–899CrossRefGoogle Scholar
  7. 7.
    Cayuela A, Soriano ML, Valcárcel M (2015) Reusable sensor based on functionalized carbon dots for the detection of silver nanoparticles in cosmetics via inner filter effect. Anal. Chim. Acta 872:70–76CrossRefPubMedGoogle Scholar
  8. 8.
    Ghosh K, Dey S, Halder S, Bhattacharjee A, Rizzoli C, Roy P (2016) A turn-on fluorescent chemosensor for Zn2+ ion: X-ray structure and application in cell imaging study. J. Mol. Struct. 1118:325–334CrossRefGoogle Scholar
  9. 9.
    Shyamal M, Mazumdar P, Maity S, Samanta S, Sahoo GP, Misra A (2016) Highly selective turn-on fluorogenic chemosensor for robust quantification of Zn (II) based on aggregation induced emission enhancement feature. ACS Sensors 1(6):739–747CrossRefGoogle Scholar
  10. 10.
    Maji A, Pal S, Lohar S, Mukhopadhyay SK, Chattopadhyay P (2017) A new turn-on benzimidazole-based greenish-yellow fluorescent sensor for Zn 2+ ions at biological pH applicable in cell imaging. New J. Chem. 41(15):7583–7590CrossRefGoogle Scholar
  11. 11.
    Borthakur R, Thapa U, Asthana M, Mitra S, Ismail K, Lal RA (2015) A new dihydrazone based “turn on” fluorescent sensor for Zn(II) ion in aqueous medium. J. Photochem. Photobiol. A Chem. 301:6–13CrossRefGoogle Scholar
  12. 12.
    Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD (2017) Fluorescent chemosensors: the past, present and future. Chem. Soc. Rev. 46(23):7105–7123CrossRefPubMedGoogle Scholar
  13. 13.
    Saluja P, Bhardwaj VK, Pandiyan T, Kaur S, Kaur N, Singh N (2014) Imine-linked chemosensors for the detection of Zn2+ in biological samples. RSC Adv. 4(19):9784–9790CrossRefGoogle Scholar
  14. 14.
    Nolan EM, Lippard SJ (2009) Small-molecule fluorescent sensors for investigating zinc Metalloneurochemistry. Acc. Chem. Res. 42(1):193–203CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Choi DW, Koh JY (1998) Zinc and brain injury. Annu. Rev. Neurosci. 21(1):347–375CrossRefPubMedGoogle Scholar
  16. 16.
    Chang CJ, Nolan EM, Jaworski J, Burdette SC, Sheng M, Lippard SJ (2004) Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc. Chem. Biol. 11(2):203–210CrossRefPubMedGoogle Scholar
  17. 17.
    Erdemir S, Yuksekogul M, Karakurt S, Kocyigit O (2017) Dual-channel fluorescent probe based on bisphenol A-rhodamine for Zn2+ and Hg2+ through different signaling mechanisms and its bioimaging studies. Sensors Actuators B Chem. 241:230–238CrossRefGoogle Scholar
  18. 18.
    Pak YL, Swamy K, Yoon J (2015) Recent progress in fluorescent imaging probes. Sensors 15(9):24374–24396CrossRefPubMedGoogle Scholar
  19. 19.
    Taki M, Wolford JL, O'Halloran TV (2004) Emission Ratiometric imaging of intracellular zinc: Design of a Benzoxazole Fluorescent Sensor and its Application in two-photon microscopy. J. Am. Chem. Soc. 126(3):712–713CrossRefPubMedGoogle Scholar
  20. 20.
    Nasir MS, Fahrni CJ, Suhy DA, Kolodsick KJ, Singer CP, O'Halloran TV (1999) The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex. JBIC J Biol Inorg Chem 4(6):775–783CrossRefPubMedGoogle Scholar
  21. 21.
    Buck SM, Koo YEL, Park E, Xu H, Philbert MA, Brasuel MA, Kopelman R (2004) Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. Curr. Opin. Chem. Biol. 8(5):540–546CrossRefPubMedGoogle Scholar
  22. 22.
    Pierluigi T et al (2007) Silica nanoparticles for fluorescence sensing of ZnII: exploring the covalent strategy. Chem. Eur. J. 13(8):2238–2245CrossRefGoogle Scholar
  23. 23.
    Lokesh Kumar Kumawat VKG (2016) Highly Selective Dual Channel Chemosensor Based on benzo[d]thiazole for Detection of Zn2+ ions. Int. J. Electrochem. Sci. 11:8861–8873CrossRefGoogle Scholar
  24. 24.
    Tomat E, Lippard SJ (2010) Imaging mobile zinc in biology. Curr. Opin. Chem. Biol. 14(2):225–230CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Krężel A, Maret W (2016) The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 611:3–19CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Naim MJ, Alam O, Nawaz F, Alam MJ, Alam P (2016) Current status of pyrazole and its biological activities. J Pharm Bioallied Sci 8(1):2–17CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Kamath A et al (2012) Pyrazole-bridged late first row transition metal complexes derived from hexadentate compartmental ligand: synthesis, characterization, antibacterial activity, and DNA binding/cleavage studies. Med. Chem. Res. 22(4):1948–1956CrossRefGoogle Scholar
  28. 28.
    Naik K, Nevrekar A, Kokare DG, Kotian A, Kamat V, Revankar VK (2016) Pyrazole bridged dinuclear cu(II) and Zn(II) complexes as phosphatase models: synthesis and activity. J. Mol. Struct. 1125:671–679CrossRefGoogle Scholar
  29. 29.
    Kulkarni NV, Kamath A, Budagumpi S, Revankar VK (2011) Pyrazole bridged binuclear transition metal complexes: synthesis, characterization, antimicrobial activity and DNA binding/cleavage studies. J. Mol. Struct. 1006(1–3):580–588CrossRefGoogle Scholar
  30. 30.
    Dey SK, Abedin TSM, Dawe LN, Tandon SS, Collins JL, Thompson LK, Postnikov AV, Alam MS, Müller P (2007) Supramolecular self-assembled Polynuclear complexes from Tritopic, Tetratopic, and Pentatopic ligands: structural, Magnetic and Surface Studies. Inorg. Chem. 46(19):7767–7781CrossRefPubMedGoogle Scholar
  31. 31.
    Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms li to Kr. J. Chem. Phys. 100(8):5829–5835CrossRefGoogle Scholar
  32. 32.
    Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms li to Kr. J. Chem. Phys. 97(4):2571–2577CrossRefGoogle Scholar
  33. 33.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Auxiliary basis sets to approximate Coulomb potentials (Chem. Phys. Letters 240 (1995) 283-290). Chem. Phys. Lett. 242(6):652–660CrossRefGoogle Scholar
  34. 34.
    Eichkorn K et al (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Accounts 97(1):119–124CrossRefGoogle Scholar
  35. 35.
    Neese F, Olbrich G (2002) Efficient use of the resolution of the identity approximation in time-dependent density functional calculations with hybrid density functionals. Chem. Phys. Lett. 362(1–2):170–178CrossRefGoogle Scholar
  36. 36.
    Hanwell MD et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4(1):1–17CrossRefGoogle Scholar
  37. 37.
    Kwon JE, Lee S, You Y, Baek KH, Ohkubo K, Cho J, Fukuzumi S, Shin I, Park SY, Nam W (2012) Fluorescent zinc sensor with minimized proton-induced interferences: Photophysical mechanism for fluorescence turn-on response and detection of endogenous free zinc ions. Inorg. Chem. 51(16):8760–8774CrossRefPubMedGoogle Scholar
  38. 38.
    Maity D, Govindaraju T (2010) Pyrrolidine constrained bipyridyl-dansyl click fluoroionophore as selective Al3+sensor. Chem. Commun. 46(25):4499–4501CrossRefGoogle Scholar
  39. 39.
    Li N, Tang W, Xiang Y, Tong A, Jin P, Ju Y (2010) Fluorescent salicylaldehyde hydrazone as selective chemosensor for Zn2+ in aqueous ethanol: a ratiometric approach. Luminescence 25(6):445–451CrossRefPubMedGoogle Scholar
  40. 40.
    Kuriyan, KAW. (2008) The Molecules of Life: Garland PublishingGoogle Scholar
  41. 41.
    Mikata Y, Sato Y, Takeuchi S, Kuroda Y, Konno H, Iwatsuki S (2013) Quinoline-based fluorescent zinc sensors with enhanced fluorescence intensity, Zn/cd selectivity and metal binding affinity by conformational restriction. Dalton Trans. 42(26):9688–9698CrossRefPubMedGoogle Scholar
  42. 42.
    Cockrell GM, Zhang G, VanDerveer DG, Thummel RP, Hancock RD (2008) Enhanced metal ion selectivity of 2,9-Di-(pyrid-2-yl)-1,10-phenanthroline and its use as a fluorescent sensor for cadmium(II). J. Am. Chem. Soc. 130(4):1420–1430CrossRefPubMedGoogle Scholar
  43. 43.
    Hancock RD (1990) Molecular mechanics calculations and metal ion recognition. Acc. Chem. Res. 23(8):253–257CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryKarnatak UniversityDharwadIndia

Personalised recommendations