Advertisement

Journal of Fluorescence

, Volume 28, Issue 3, pp 855–862 | Cite as

Two Photon Spectroscopy Can Serve as a Marker of Protein Denaturation Pathway

  • Dipak Kumar DasEmail author
  • Sk Imadul Islam
  • Nirnay Samanta
  • Yogendra Yadav
  • Debabrata GoswamiEmail author
  • Rajib Kumar MitraEmail author
ORIGINAL ARTICLE

Abstract

Rhodamine group of molecules are widely used dyes for imaging of biological molecules. Application of these dyes however includes a limitation that these molecules absorb in the visible range of the spectrum, which does not fall in the ‘biologically transparent window’ (BTW). Two photon absorption (TPA) process could come up with an alternate solution to this as these dyes could be excited in the near infrared (NIR) window to extract similar information. To validate this we have investigated TPA cross section (TPACS, σ2) of two rhodamine dyes, namely Rhodamine 6G (R6G), Rhodamine B (RhB), site selectively bound with a model protein, bovine serum albumin (BSA), by exciting at 800 nm. Two photon spectroscopy and imaging confirms the binding of the dye to the protein. The decreases in TPACS with increasing temperature at a fixed BSA concentration excellently follows the temperature induced structural transition of BSA as the protein transforms from a molten globule to unfolded conformation beyond 60 °C, which has previously been established through circular dichroism (CD) measurements. The thus established resemblance in TPACS and CD measurement trends thus strongly affirms the suitability of TPA process in protein imaging and as an alternative marker to tracking its conformational transformations using NIR radiation.

Keywords

Two photon Rhodamine Human serum albumin Circular dichroism 

Notes

Acknowledgements

RKM acknowledge the funding from 12th Five Year Plan project at SNBNCBS (SNB/AB/12-13/96). SII wants to thank UGC, India for graduate fellowship. DG acknowledges ISRO funds for imaging.

Supplementary material

10895_2018_2250_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1426 kb)

References

  1. 1.
    Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25:1487–1499CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Munishkina LA, Fink AL (2007) Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta Biomembr 1768:1862–1885CrossRefGoogle Scholar
  3. 3.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317CrossRefPubMedGoogle Scholar
  4. 4.
    Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634CrossRefPubMedGoogle Scholar
  5. 5.
    Hemmer E, Benayas A, Legare F, Vetrone F (2016) Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horiz 1:168–184CrossRefGoogle Scholar
  6. 6.
    Samanta N, Mahanta DD, Hazra S, Kumar GS, Mitra RK (2014) Short chain polyethylene glycols unusually assist thermal unfolding of human serum albumin. Biochimie 104:81–89CrossRefPubMedGoogle Scholar
  7. 7.
    Yang J, Tian Y, Zhang S, Wu J, Jin B (2014) Two-photon absorption and sensitivity to DNA of dye molecule-driven CdSe quantum dots. RSC Adv 4:19578–19583CrossRefGoogle Scholar
  8. 8.
    Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13:481–491CrossRefGoogle Scholar
  9. 9.
    Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129:2669–2675CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fisher WG, Partridge WP, Dees C, Wachter EA (1997) Simultaneous two-photon activation of type-I photodynamic therapy agents. Photochem Photobiol 66:141–155CrossRefPubMedGoogle Scholar
  11. 11.
    Yao S, Belfield KD (2012) Two-photon fluorescent probes for bioimaging. Eur J Org Chem 2012:3199–3217CrossRefGoogle Scholar
  12. 12.
    Andrade CD, Yanez CO, Ahn H-Y, Urakami T, Bondar MV, Komatsu M, Belfield KD (2011) Two-photon fluorescence vascular bioimaging with new bioconjugate probes selective toward the vascular endothelial growth factor receptor 2. Bioconjug Chem 22:2060–2071CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Weerasinghe AJ, Schmiesing C, Varaganti S, Ramakrishna G, Sinn E (2010) Single- and multiphoton turn-on fluorescent Fe3+ sensors based on Bis(rhodamine). J Phys Chem B 114:9413–9419CrossRefPubMedGoogle Scholar
  14. 14.
    Wang L, Zheng J, Yang S, Wu C, Liu C, Xiao Y, Li Y, Qing Z, Yang R (2015) Two-photon sensing and imaging of endogenous biological cyanide in plant tissues using graphene quantum dot/gold nanoparticle conjugate. ACS Appl Mater Interfaces 7:19509–19515CrossRefPubMedGoogle Scholar
  15. 15.
    Wang Y, Goodson T (2007) Early aggregation in prion peptide nanostructures investigated by nonlinear and ultrafast time-resolved fluorescence spectroscopy. J Phys Chem B 111:327–330CrossRefPubMedGoogle Scholar
  16. 16.
    Cotlet M, Goodwin PM, Waldo GS, Werner JH (2006) A comparison of the fluorescence dynamics of single molecules of a green fluorescent protein: one- versus two-photon excitation. ChemPhysChem 7:250–260CrossRefPubMedGoogle Scholar
  17. 17.
    Nag A, Goswami D (2009) Solvent effect on two-photon absorption and fluorescence of rhodamine dyes. J Photochem Photobiol A Chem 206:188–197CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Doan PH, Pitter DRG, Kocher A, Wilson JN, Goodson T (2015) Two-photon spectroscopy as a new sensitive method for determining the DNA binding mode of fluorescent nuclear dyes. J Am Chem Soc 137:9198–9201CrossRefPubMedGoogle Scholar
  19. 19.
    Doan P, Pitter DRG, Kocher A, Wilson JN, Goodson T (2016) A new design strategy and diagnostic to tailor the DNA-binding mechanism of small organic molecules and drugs. ACS Chem Biol 11:3202–3213CrossRefPubMedGoogle Scholar
  20. 20.
    Deiana M, Mettra B, Martinez-Fernandez L, Mazur LM, Pawlik K, Andraud C, Samoc M, Improta R, Monnereau C, Matczyszyn K (2017) Specific recognition of G-Quadruplexes over duplex-DNA by a macromolecular NIR two-photon fluorescent probe. J Phys Chem Lett 8:5915–5920CrossRefPubMedGoogle Scholar
  21. 21.
    Deiana M, Mettra B, Mazur LM, Andraud C, Samoc M, Monnereau C, Matczyszyn K (2017) Two-photon macromolecular probe based on a Quadrupolar Anthracenyl scaffold for sensitive recognition of serum proteins under simulated physiological conditions. ACS Omega 2:5715–5725CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    McLean AM, Socher E, Varnavski O, Clark TB, Imperiali B, Goodson T (2013) Two-photon fluorescence spectroscopy and imaging of 4-Dimethylaminonaphthalimide peptide and protein conjugates. J Phys Chem B 117:15935–15942CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kubin RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Lumin 27:455–462CrossRefGoogle Scholar
  24. 24.
    Langer G, Bouchal K-D, Grün H, Burgholzer P, Berer T (2013) Two-photon absorption-induced photoacoustic imaging of rhodamine B dyed polyethylene spheres using a femtosecond laser. Opt Express 21:22410–22422CrossRefPubMedGoogle Scholar
  25. 25.
    Zhu J, Li J-J, Zhao J-W (2009) Spectral characters of rhodamine B as a multi-information fluorescence probe for bovine serum albumins. Sensors Actuators B Chem 138:9–13CrossRefGoogle Scholar
  26. 26.
    Cai H-H, Zhong X, Yang P-H, Wei W, Chen J, Cai J (2010) Probing site-selective binding of rhodamine B to bovine serum albumin. Colloids Surf A Physicochem Eng Asp 372:35–40CrossRefGoogle Scholar
  27. 27.
    Ma Y-XZR-B, Guo J, Liu Y-S, Yuan M, Bai Z-J, Liu T-T, Zhao X-M, Zhang F (2015) A facile method for studying interaction of rhodamine B and bovine serum albumin: towards physical-binding mediated fluorescence labeling of proteins. Nucl Sci Tech 26:60502Google Scholar
  28. 28.
    Yang WJ, Kim CH, Jeong M-Y, Lee SK, Piao MJ, Jeon S-J, Cho BR (2004) Synthesis and two-photon absorption properties of 9,10-Bis(arylethynyl)anthracene derivatives. Chem Mater 16:2783–2789CrossRefGoogle Scholar
  29. 29.
    Tian Y, Chen CY, Cheng YJ, Young AC, Tucker NM, Jen AKY (2007) Hydrophobic chromophores in aqueous micellar solution showing large two-photon absorption cross sections. Adv Funct Mater 17:1691–1697CrossRefGoogle Scholar
  30. 30.
    Hermann JP, Ducuing J (1972) Dispersion of the two-photon cross section in rhodamine dyes. Opt Commun 6:101–105CrossRefGoogle Scholar
  31. 31.
    Jisha VS, Arun KT, Hariharan M, Ramaiah D (2010) Site-selective interactions: Squaraine dye−serum albumin complexes with enhanced fluorescence and triplet yields. J Phys Chem B 114:5912–5919CrossRefPubMedGoogle Scholar
  32. 32.
    Jisha VS, Arun KT, Hariharan M, Ramaiah D (2006) Site-selective binding and dual mode recognition of serum albumin by a Squaraine dye. J Am Chem Soc 128:6024–6025CrossRefPubMedGoogle Scholar
  33. 33.
    Bolel P, Mahapatra N, Datta S, Halder M (2013) Modulation of accessibility of subdomain IB in the pH-dependent interaction of bovine serum albumin with cochineal red a: a combined view from spectroscopy and docking simulations. J Agric Food Chem 61:4606–4613CrossRefPubMedGoogle Scholar
  34. 34.
    Magde D, Rojas GE, Seybold PG (1999) Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem Photobiol 70:737–744CrossRefGoogle Scholar
  35. 35.
    López Arbeloa I, Ruiz Ojeda P (1982) Dimeric states of rhodamine B. Chem Phys Lett 87:556–560CrossRefGoogle Scholar
  36. 36.
    Arbeloa IL, Ojeda PR (1981) Molecular forms of rhodamine B. Chem Phys Lett 79:347–350CrossRefGoogle Scholar
  37. 37.
    Terdale S, Tantray A (2017) Spectroscopic study of the dimerization of rhodamine 6G in water and different organic solvents. J Mol Liq 225:662–671CrossRefGoogle Scholar
  38. 38.
    Fischer M, Georges J (1997) Use of thermal lens spectrometry for the investigation of dimerization equilibria of rhodamine 6G in water and aqueous micellar solutions. Spectrochim Acta A Mol Biomol Spectrosc 53:1419–1430CrossRefGoogle Scholar
  39. 39.
    Kemnitz K, Yoshihara K (1991) Entropy-driven dimerization of xanthene dyes in nonpolar solution and temperature-dependent fluorescence decay of dimers. J Phys Chem 95:6095–6104CrossRefGoogle Scholar
  40. 40.
    Takeda K, Wada A, Yamamoto K, Moriyama Y, Aoki K (1989) Conformational change of bovine serum albumin by heat treatment. J Protein Chem 8:653–659CrossRefPubMedGoogle Scholar
  41. 41.
    Moriyama Y, Watanabe E, Kobayashi K, Harano H, Inui E, Takeda K (2008) Secondary structural change of bovine serum albumin in thermal denaturation up to 130 °C and protective effect of sodium dodecyl sulfate on the change. J Phys Chem B 112:16585–16589CrossRefPubMedGoogle Scholar
  42. 42.
    Samanta N, Luong TQ, Das Mahanta D, Mitra RK, Havenith M (2016) Effect of short chain poly(ethylene glycol)s on the hydration structure and dynamics around human serum albumin. Langmuir 32:831–837CrossRefPubMedGoogle Scholar
  43. 43.
    Li G, Magana D, Dyer RB (2014) Anisotropic energy flow and allosteric ligand binding in albumin. Nat Commun 5:3100CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215CrossRefPubMedGoogle Scholar
  45. 45.
    Ghosh S, Dey J (2015) Binding of fatty acid amide Amphiphiles to bovine serum albumin: role of amide hydrogen bonding. J Phys Chem B 119:7804–7815CrossRefPubMedGoogle Scholar
  46. 46.
    Gryczynski I, Malak H, Lakowicz JR (1996) Three-photon excitation of a tryptophan derivative using a fs-Ti : sapphire laser. Biospectroscopy 2:9–15CrossRefGoogle Scholar
  47. 47.
    Vivas MG, Mendonca CR (2012) Temperature effect on the two-photon absorption spectrum of all-trans-β-carotene. J Phys Chem A 116:7033–7038CrossRefPubMedGoogle Scholar
  48. 48.
    De Boni L, Piovesan E, Misoguti L, Zílio SC, Mendonca CR (2007) Two-photon absorption dependence on the temperature for Azoaromatic compounds: effect of molecular conformation. J Phys Chem A 111:6222–6224CrossRefPubMedGoogle Scholar
  49. 49.
    Borzova VA, Markossian KA, Chebotareva NA, Kleymenov SY, Poliansky NB, Muranov KO, Stein-Margolina VA, Shubin VV, Markov DI, Kurganov BI (2016) Kinetics of thermal denaturation and aggregation of bovine serum albumin. PLoS One 11:e0153495CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sinha SS, Mitra RK, Pal SK (2008) Temperature-dependent simultaneous ligand binding in human serum albumin. J Phys Chem B 112:4884–4891CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic SciencesKolkataIndia
  2. 2.Department of ChemistryIndian Institute of TechnologyKanpurIndia

Personalised recommendations