Advertisement

A Novel Fluorescent Nanoparticle for Sensitive Detection of Cry1Ab Protein In Vitro and In Vivo

  • Xiao Xu
  • Hao Chen
  • Yuancheng Cao
  • Yongjun Lin
  • Jun’an Liu
FLUORESCENCE NEWS ARTICLE
  • 32 Downloads

Abstract

Here, we report the synthesis and characterization of CoFe2O4 doping Ag2S dendrimer-modified nanoparticles (CoFe2O4-Ag2S DMNs) in Cry1Ab protein detection and imaging. The near-infrared Ag2S quantum dots were first prepared by using the thermal decomposition method, followed by modification of the water-soluble quantum dots using the method of solvent evaporation and ligand exchange, and finally the fluorescent magnetic bifunctional nanoparticles were obtained by binding with CoFe2O4. As-prepared CoFe2O4-Ag2S DMNs were characterized by fluorescence (FL) spectroscopy and transmission electron microscopy (TEM). Results showed that Ag2S DMNs could sensitively detect Cry1Ab both in vitro and in vivo. In vitro, the enhanced FL intensity as a function of the concentration is notably consistent with the Langmuir binding isotherm equation in the range of 0–200 ng/mL of Cry1Ab proteins. The detection limit of this method was found to be 0.2 ng/mL. Meanwhile, the fluorescence wavelength was extended to the second near-infrared range (NIR-II, 1.0~1.4 μm), which enables in vivo imaging. This study highlights the importance of NIR QDs doping magnetic materials as a new method to trace Bacillus thuringiensis (Bt) in insects and their potential applications in in vivo NIR tissue imaging.

Keywords

Ag2S quantum dot Bacillus thuringiensis PAMAM CoFe2O4 Cry1Ab protein 

Notes

Acknowledgements

This project was supported by the Scientific Research Initial funding for the advanced talent of Jianghan University (08010001, 06750001); Dr. Liu thanks the supported from the Fundamental Research Funds for the Central Universities (2010QC014) and Natural Science Foundation of Hubei Province of China (2014CFA092) and Fundamental Research Funds for the Central Universities (Program No.2662018PY018).

References

  1. 1.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97CrossRefPubMedGoogle Scholar
  2. 2.
    Rao J, Dragulescu-Andrasi A, Yao H, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18:17–25CrossRefPubMedGoogle Scholar
  3. 3.
    Moreels I, Lambert K, De Muynck D, Vanhaecke F, Poelman D et al (2007) Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem Mater 19:6101–6106CrossRefGoogle Scholar
  4. 4.
    Lee H, Leventis HC, Moon S-J, Chen P, Ito S, Haque SA, Torres T, Nüesch F, Geiger T, Zakeeruddin SM, Grätzel M, Nazeeruddin MK (2009) PbS and CdS quantum dot-sensitized solid-state solar cells: "old concepts, new results". Adv Funct Mater 19:2735–2742CrossRefGoogle Scholar
  5. 5.
    Chen H, Wang Y, Xu J, Ji J, Zhang J, Hu Y, Gu Y (2008) Non-invasive near infrared fluorescence imaging of CdHgTe quantum dots in mouse model. J Fluoresc 18:801–811CrossRefPubMedGoogle Scholar
  6. 6.
    Suyver JF, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Krämer KW, Reinhard C, Güdel HU (2005) Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt Mater 27:1111–1130CrossRefGoogle Scholar
  7. 7.
    Wang M, Mi C-C, Wang W-X, Liu C-H, Wu Y-F, Xu ZR, Mao CB, Xu SK (2009) Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4): Yb, Er upconversion nanoparticles. ACS Nano 3:1580–1586CrossRefPubMedGoogle Scholar
  8. 8.
    Dong B, Li C, Chen G, Zhang Y, Zhang Y, Deng M, Wang Q (2013) Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem Mater 25:2503–2509CrossRefGoogle Scholar
  9. 9.
    Li C, Zhang Y, Wang M, Zhang Y, Chen G, Li L, Wu D, Wang Q (2014) In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35:393–400CrossRefPubMedGoogle Scholar
  10. 10.
    Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8:3834–3838CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jiang P, Zhu CN, Zhang ZL, Tian ZQ, Pang DW (2012) Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33:5130–5135CrossRefPubMedGoogle Scholar
  12. 12.
    Shen S, Zhang Y, Liu Y, Peng L, Chen X, Wang Q (2012) Manganese-doped Ag2S-ZnS heteronanostructures. Chem Mater 24:2407–2413CrossRefGoogle Scholar
  13. 13.
    Wang C, Wang Y, Xu L, Zhang D, Liu M, Li X, Sun H, Lin Q, Yang B (2012) Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: tunable photoluminescence from red to near infrared. Small 8:3137–3142CrossRefPubMedGoogle Scholar
  14. 14.
    Yang HY, Zhao YW, Zhang ZY, Xiong HM, Yu SN (2013) One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology 24:1–11Google Scholar
  15. 15.
    Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q (2012) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6:3695–3702CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang Y, Zhang Y, Hong G, He W, Zhou K, Yang K, Li F, Chen G, Liu Z, Dai H, Wang Q (2013) Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 34:3639–3646CrossRefPubMedGoogle Scholar
  17. 17.
    Dufes C, Uchegbu IF, Schatzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202CrossRefPubMedGoogle Scholar
  18. 18.
    Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6:427–436CrossRefPubMedGoogle Scholar
  19. 19.
    Gupta U, Agashe HB, Asthana A, Jain NK (2006) Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules 7:649–658CrossRefPubMedGoogle Scholar
  20. 20.
    Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48:199–208PubMedGoogle Scholar
  21. 21.
    Gillies ER, Frechet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43CrossRefPubMedGoogle Scholar
  22. 22.
    Hawker CJ, Malmstrom EE, Frank CW, Kampf JP (1997) Exact linear analogs of dendritic polyether macromolecules: design, synthesis, and unique properties. J Am Chem Soc 119:9903–9904CrossRefGoogle Scholar
  23. 23.
    Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 65:133–148CrossRefPubMedGoogle Scholar
  24. 24.
    Tomalia DA, Reyna LA, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35:61–67CrossRefPubMedGoogle Scholar
  25. 25.
    Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Lauterbur PC (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31:1–8CrossRefPubMedGoogle Scholar
  26. 26.
    Gao J, Zhang W, Huang P et al (2008) Intracellular spatial control of fluorescent magnetic nanoparticles. Journal of the, vol 130. American Chemical Society, p 3710Google Scholar
  27. 27.
    Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818CrossRefPubMedGoogle Scholar
  28. 28.
    Grunert KG (2005) Food quality and safety: consumer perception and demand. Eur Rev Agric Econ 32:369–391CrossRefGoogle Scholar
  29. 29.
    Konig A, Cockburn A, Crevel RWR, Debruyne E, Grafstroem R et al (2004) Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem Toxicol 42:1047–1088CrossRefPubMedGoogle Scholar
  30. 30.
    Wu W, Lu H, Liu W, Devare M, Thies JE, Chen Y (2009) Decomposition of bacillus thuringiensis (Bt) transgenic rice residues (straw and roots) in paddy fields. J Soils Sediments 9:457–467CrossRefGoogle Scholar
  31. 31.
    Swan CM, Jensen PD, Dively GP, Lamp WO (2009) Processing of transgenic crop residues in stream ecosystems. J Appl Ecol 46:1304–1313Google Scholar
  32. 32.
    Lu H, Wu W, Chen Y, Wang H, Devare M, Thies JE (2010) Soil microbial community responses to Bt transgenic rice residue decomposition in a paddy field. J Soils Sediments 10:1598–1605CrossRefGoogle Scholar
  33. 33.
    Ramirez-Romero R, Desneux N, Chaufaux J, Kaiser L (2008) Bt-maize effects on biological parameters of the non-target aphid Sitobion avenae (Homoptera: Aphididae) and Cry1Ab toxin detection. Pestic Biochem Physiol 91:110–115CrossRefGoogle Scholar
  34. 34.
    Li Q, Fang J, Liu X, Xi X, Li M, Gong Y, Zhang M (2013) Loop-mediated isothermal amplification (LAMP) method for rapid detection of Cry1Ab gene in transgenic rice (Oryza sativa L.). Eur Food Res Technol 236:589–598CrossRefGoogle Scholar
  35. 35.
    Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579CrossRefPubMedGoogle Scholar
  36. 36.
    Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications--reflections on the field. Adv Drug Deliv Rev 57:2106–2129CrossRefPubMedGoogle Scholar
  37. 37.
    Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190CrossRefPubMedGoogle Scholar
  38. 38.
    Feng, Chunyan, Yejun, et al (2015) Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res 8: 1637–1647Google Scholar
  39. 39.
    Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q (2012) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6:3695–3702CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Liu J, Wang F, Han Y et al (2015) Polyamidoamine functionalized CdTeSe quantum dots for sensitive detection of Cry1Ab protein in vitro and in vivo. Sens Actuators B Chem 206:8–13CrossRefGoogle Scholar
  41. 41.
    Zou WS, Qiao JQ, Hu X, Ge X, Lian HZ (2011) Synthesis in aqueous solution and characterisation of a new cobalt-doped ZnS quantum dot as a hybrid ratiometric chemosensor. Anal Chim Acta 708:134–140CrossRefPubMedGoogle Scholar
  42. 42.
    Zou WS, Sheng D, Ge X, Qiao JQ, Lian HZ (2011) Room-temperature phosphorescence chemosensor and Rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots. Anal Chem 83:30–37CrossRefPubMedGoogle Scholar
  43. 43.
    Soberón M, Gill SS, Bravo A (2009) Signaling versus punching hole: how do bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci 66:1337–1349CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiao Xu
    • 1
  • Hao Chen
    • 1
  • Yuancheng Cao
    • 3
  • Yongjun Lin
    • 2
  • Jun’an Liu
    • 1
  1. 1.College of ScienceHuazhong Agricultural UniversityWuhanChina
  2. 2.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
  3. 3.Key Laboratory of Optoelectronic Chemical Materials and DevicesJianghan UniversityWuhanChina

Personalised recommendations