Journal of Fluorescence

, Volume 28, Issue 1, pp 453–464 | Cite as

Photoluminescent and Thermoluminescent Studies of Dy3+ and Eu3+ Doped Y2O3 Phosphors

  • Tarkeshwari Verma
  • Sadhana AgrawalEmail author


Eu3+ doped and Dy3+ codoped yttrium oxide (Y2O3) phosphors have been prepared using solid-state reaction technique (SSR). The prepared phosphors were characterized by X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR) techniques. Photoluminescence (PL) and Thermoluminescence (TL) properties were studied in detail. PL emission spectra were recorded for prepared phosphors under excitation wavelength 254 nm, which show a high intense peak at 613 nm for Y2O3:Dy3+, Eu3+ (1:1.5 mol %) phosphor. The correlated color temperature (CCT) and CIE analysis have been performed for the synthesized phosphors. TL glow curves were recorded for Eu3+doped and Dy3+codoped phosphors to study the heating rate effect and dose response. The kinetic parameters were calculated using peak shape method for UV and γ exposures through computerized glow curve deconvolution (CGCD) technique. The phosphors show second order kinetics and activation energies varying from 5.823 × 10− 1 to 18.608 × 10− 1 eV.


Yttrium oxide Photoluminescence Thermoluminescence Heating rate Correlated color temperature 


  1. 1.
    Chan T, Kang CC, Liu RS, Chen L, Liu X, Ding JJ, Bao J, Gao C (2007) Combinatorial study of the optimization of Y2O3: Bi, Eu red phosphors. J Comb Chem 9(3):343–346CrossRefPubMedGoogle Scholar
  2. 2.
    Das GK, Tan TTY (2008) Rare-earth-doped and codoped Y2O3 nanomaterials as potential bioimaging probes. J Phys Chem C 112(30):11211–11217CrossRefGoogle Scholar
  3. 3.
    Jayaramaiah JR, Lakshminarasappa BN, Nagabhushana BM (2012) Luminescence studies of europium doped yttrium oxide nano phosphor. Sensors Actuators B Chem 173:234–238CrossRefGoogle Scholar
  4. 4.
    Atabaev TS, Hwang YH, Kim HK (2012) Color-tunable properties of Eu3+ and Dy3+-codoped Y2O3 phosphor particles. Nanoscale Res Lett 7(1):556CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee SH, Choi JI, Kim YJ, Han JK, Ha J, Novitskaya E, Talbot JB, McKittrick J (2015) Comparison of luminescent properties of Y2O3: Eu 3+ and LaPO 4: Ce3+, Tb3+ phosphors prepared by various synthesis methods. Mater Charact 103:162–169CrossRefGoogle Scholar
  6. 6.
    Shivaramu NJ, Nagabhushana KR, Lakshminarasappa BN, Singh F (2016) Ion beam induced luminescence studies of sol gel derived Y2O3: Dy 3+ nanophosphors. J Lumin 169:627–634CrossRefGoogle Scholar
  7. 7.
    Atabaev TS, Vu HHT, Kim HK, Hwang YH (2012) Synthesis and optical properties of Dy3+-doped Y2O3 nanoparticles. J Korean Phys Soc 60(2):244–248CrossRefGoogle Scholar
  8. 8.
    Som S, Sharma SK, Lochab SP (2013) Morphology, ion impact, and kinetic parameters of swift heavy-ion-induced Y2O3 Dy3+ phosphor. Phys Status Solidi A 210(8):1624–1635CrossRefGoogle Scholar
  9. 9.
    Som S, Sharma SK, Lochab SP (2014) Swift heavy ion induced structural and luminescence characterization of Y2O3: Eu3+ phosphor: a comparative study. Luminescence 29(5):480–491CrossRefPubMedGoogle Scholar
  10. 10.
    Yang HK, Jeong JH (2009) Synthesis, crystal growth, and photoluminescence properties of YAG: Eu3+ phosphors by high-energy ball milling and solid-state reaction. J Phys Chem C 114(1):226–230CrossRefGoogle Scholar
  11. 11.
    Singh LR, Ningthoujam RS, Sudarsan V, Srivastav I, Singh SD, Dey GK, Kulshreshtha SK (2008) Luminescence Study of Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects. Nanotechnology 19:055201–8Google Scholar
  12. 12.
    Cullity BD (1956) Elements of X ray diffraction. Addition Wesley Publication CompanyGoogle Scholar
  13. 13.
    Som S, Sharma SK (2012) Eu3+/Tb3+–codoped Y2O3 nanophosphors: rietveld refinement, bandgap and photoluminescence optimization. J Phys D Appl Phys 45(41):415102CrossRefGoogle Scholar
  14. 14.
    Shivaramu NJ, Nagabhushana KR, Lakshminarasappa BN, Singh F (2016) Synthesis characterization and luminescence studies of gamma irradiated nanocrystalline yttrium oxide. Spectrochim Acta A Mol Biomol Spectrosc 154:220–231CrossRefPubMedGoogle Scholar
  15. 15.
    Mathur VR (1993) Thermoluminescent materials. Prentice Hall, Englewood CliffsGoogle Scholar
  16. 16.
    McKeever SWS Thermoluninesence of solid. Cambridge University Press, London, p 174–188Google Scholar
  17. 17.
    Shivaramu NJ, Nagabhushana KR, Lakshminarasappa BN (2012) Thermoluminescence of combustion synthesized yttrium oxide. Powder Technol 217:7–10CrossRefGoogle Scholar
  18. 18.
    M.Chandrasekhar DV, Sunitha N, Dhananjaya H, Nagabhushana SC, Sharma BM, Nagabhushana C, Shivakumara, Chakradhar RPS (2012) Thermoluminescence response in gamma and UV irradiated Dy2O3nanophosphor. J Lumin 132(7):1798–1806CrossRefGoogle Scholar
  19. 19.
    Dubey V, Kaur J, Agrawal S, Suryanarayana NS, Murthy KVR (2014) Effect of Eu3+ concentration on photoluminescence and thermoluminescence behavior of YBO 3: Eu3+ phosphor. Superlattice Microstruct 67:156–171CrossRefGoogle Scholar
  20. 20.
    Kafadar VE (2011) Thermal quenching of thermoluminescence in TLD-200, TLD-300 and TLD-400 after b-irradiation. Phys B 406(3):537–540CrossRefGoogle Scholar
  21. 21.
    Topaksu M, Correcher V, Garcia-Guinea J, Yüksel M (2015) Effect of heating rate on the thermoluminescence and thermal properties of natural ulexite. Appl Radiat Isot 95:222–225CrossRefGoogle Scholar
  22. 22.
    Bahl S, Pandey A, Lochab SP, Aleynikov AG, Kumar P (2013) Synthesis and thermoluminescence characteristics of gamma and proton irradiatedna no-crystalline MgB4O7:Dy Na. J Lumin 134:691–698CrossRefGoogle Scholar
  23. 23.
    Balian H, Garo H Eddy NW (1977) Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of g-ray spectral peaks. Nucl Inst Methods 145(2):389–395CrossRefGoogle Scholar
  24. 24.
    Kortov V (2007) Materials for thermoluminescent dosimetry: current status and future trends. Radiat Meas 42(4):576–581CrossRefGoogle Scholar
  25. 25.
    Singh RP, Gupta K, Pandey A, Pandey A (2012) Synthesis and characterization of Eu+++doped Y2O3(red phosphor) and Tb+++doped Y2O3(green phosphor) by hydrothermal processes. World J Nano Sci Eng 2(01):13CrossRefGoogle Scholar
  26. 26.
    Binnemans K (2015) Interpretation of europium (III) spectra. Coord Chem Rev 295:1–45CrossRefGoogle Scholar
  27. 27.
    Guo H, Zhang H, Wei RF, Zheng MD, Zhang LH (2011) Preparation, structural and luminescent properties of Ba 2Gd2Si4O13: Eu3+for white LEDs. Opt Express 19(102):A201-A206Google Scholar
  28. 28.
    Jørgensen CK, Judd BR (1964) Hypersensitive pseudoquadrupole transitions in lanthanides. Mol Phys 8(3):281–290CrossRefGoogle Scholar
  29. 29.
    Shivaramu NJ, Nagabhushana KR, Lakshminarasappa BN, Singh F (2016) Ion beam induced luminescence studies of sol gel derived Y2O3: Dy3+ nanophosphors. J Lumin 169:627–634CrossRefGoogle Scholar
  30. 30.
    Tingqiao LEOW, Hong LIU, Hussin R, Ibrahim Z, Deraman K, Lintang HO, Shamsuri WNW (2016) Effects of Eu3+ and Dy3+ doping or co-doping on optical and structural properties of BaB2Si2O8 phosphor for white LED applications. J Rare Earths 34(1):21–29CrossRefGoogle Scholar
  31. 31.
    Som S, Mitra P, Kumar V, Kumar V, Terblans JJ, Swart HC, Sharma SK (2014) The energy transfer phenomena and colour tunability in Y2O3S: Eu3+ / Dy3+ micro-fibers for white emission in solid state lighting applications. Dalton Trans 43(26):9860–9871CrossRefPubMedGoogle Scholar
  32. 32.
    Liu Q, Liu Y, Yang Z, Han Y, Li X Fu G (2012) Multiwavelength excited white-emitting phosphor Dy3+activated Ba3Bi(PO4)3. J Alloy Compd 515:16–19CrossRefGoogle Scholar
  33. 33.
    Blasse G (1994) BC Grabmaier. Energy transfer. In: Luminescent materials. Springer, Berlin, pp 91–107CrossRefGoogle Scholar
  34. 34.
    Shambhavi Katyayan SA (2017) Investigation of spectral properties of Eu3 + and Tb3 + doped strontium zirconium trioxide orthorhombic perovskite for optical and sensing applications.J Mater Sci Mater Electron. Google Scholar
  35. 35.
    Yang F, Qiao L, Ren H, Yan F, Xie Z (2017) Synthesis and luminescence properties of color-tunable Dy3+/Eu3+: CeAlON phosphors. Ceram Int 43(11):8406–8410CrossRefGoogle Scholar
  36. 36.
    CIE (1931) International commission on illumination. Publication CIE no.15 (E-13.1)Google Scholar
  37. 37.
    Drew MS, Joze HRV (2011) Planckian regression temperature for least spectral error and least CIELAB error. JOSA A 28(9):1954–1961CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology RaipurRaipurIndia

Personalised recommendations