Template Synthesis, Spectral, Thermal and Glucose Sensing of Pr3+ Complexes of Metformin Schiff-Bases

  • Marwa Mahmoud
  • Enas Abdel-Salam
  • Mahmoud Abou-Elmagd
  • Shehab SallamEmail author


Schiff-bases of metformin with each of salicylaldehyde (HL1); 2,3-dihydroxybenzaldehyde (H2L2); 2,4-dihydroxybenzaldehyde (H2L3); 2,5-dihydroxybenzaldehyde (H2L4); 3,4-dihydroxybenzaldehyde (H2L5) and 2-hydroxynaphthaldehyde (HL6) and their complexes with Pr(III) were synthesized by template reaction. The complexes were characterized through elemental analysis, conductivity and magnetic moment measurements, IR, UV-Vis., fluorescence, GC-MS and XRD spectroscopy. The complexes exhibit a series of characteristic emission bands for Pr3+ ion in the 481-472 and 590-580 nm range with a 318-332 nm excitation source. The complexes have eight coordinated structure with the formulae [PrL1-4,6(NO3)2(H2O)3].nH2O where n = 1, 1½, 3, 4, 4 and [PrL5(NO3)(H2O)5].2H2O. The suggested stereochemistry was confirmed using TGA, DTG and DTA analysis and a mechanism for thermal decomposition was proposed. Coates-Redfern equation was used to calculate kinetic and thermodynamic parameters of the main decomposition step. The utility of the complexes towards the detection of glucose at physiologically relevant pH in phosphate buffer using UV-Vis and fluorescence spectroscopy as well as viscosity measurements are tried where the association constants were calculated.

Graphical Abstract


Metformin Schiff-bases Pr(III) complexes Spectral and thermal properties Glucose sensing 


Supplementary material

10895_2018_2341_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1665 kb)
10895_2018_2341_MOESM2_ESM.pdf (1.8 mb)
ESM 2 (PDF 1889 kb)
10895_2018_2341_MOESM3_ESM.pdf (302 kb)
ESM 3 (PDF 302 kb)
10895_2018_2341_MOESM4_ESM.pdf (457 kb)
ESM 4 (PDF 456 kb)
10895_2018_2341_MOESM5_ESM.pdf (236 kb)
ESM 5 (PDF 235 kb)
10895_2018_2341_MOESM6_ESM.pdf (299 kb)
ESM 6 (PDF 299 kb)
10895_2018_2341_MOESM7_ESM.pdf (1.7 mb)
ESM 7 (PDF 1743 kb)


  1. 1.
    Stepensky D, Friedman M, Srour W, Raz I, Hoffman A (2001) Preclinical evaluation of pharmacokinetic–pharmacodynamic rationale for oral CR metformin formulation. J Control Release 71:107–115CrossRefGoogle Scholar
  2. 2.
    Babykutty PV, Parbhakaran CP, Anantaraman R, Nair CGR (1974) Electronic and infrared spectra of biguanide complexes of the 3d-transition metals. J Inorg Nucl Chem 36:3685–3688CrossRefGoogle Scholar
  3. 3.
    Subasinghe S, Greenbaum AL, McLean P (1985) The insulin-mimetic action of Mn2+: involvement of cyclic nucleotides and insulin in the regulation of hepatic hexokinase and glucokinase. Biochem Med 34:83–92CrossRefGoogle Scholar
  4. 4.
    Zhu M, Lu L, Yang P, Jin X (2002) Bis(1,1-di-methylbiguanido)copper(II) octahydrate. Acta Crystallogr E58:m217–m219Google Scholar
  5. 5.
    Patrinoiu G, Patron L, Carp O, Stanica N (2003) Thermal behaviour of some iron(III) complexes with active therapeutically biguanides. J Therm Anal Calorim 72(2):489–495CrossRefGoogle Scholar
  6. 6.
    Olar R, Badea M, Cristurean E, Lazar V, Cernat R, Balotescu C (2005) Thermal behavior, spectroscopic and biological characterization of co(II), Zn(II), Pd(II) and Pt(II) complexes with N,N-dimethylbiguanide. J Therm Anal Calorim 80(2):451–455CrossRefGoogle Scholar
  7. 7.
    Al-Saif FA, Refat MS (2013) Synthesis, spectroscopic, and thermal investigation of transition and non-transition complexes of metformin as potential insulin-mimetic agents. J Therm Anal Calorim 111:2079–2096CrossRefGoogle Scholar
  8. 8.
    El-Megharbel SM (2015) Synthesis, Characterization and Antidiabetic Activity of Chromium (III) Metformin Complex. J Microb Biochem Technol 7:65–75Google Scholar
  9. 9.
    Gao JA (2007) A weak hydrolytical copper(II) complex derived from condensation of N,N-Dimethylbiguanide with 2-Pyridinecarbaldehyde synthesis, crystal structure and biological activity. Synth React Inorg Met-Org Nano-Met Chem 37(8):621–625Google Scholar
  10. 10.
    Olar R, Badea M, Marinescu D, Iorgulescu E, Stoleriu S (2005) Ni(II) complexes with ligands resulted in condensation of N,N-dimethylbiguanide and pentane-2,4-dione. J Therm Anal Calorim 80:363–367CrossRefGoogle Scholar
  11. 11.
    Mahmoud MA, Zaitone SA, Ammar AM, Sallam SA (2006) Structure and antidiabetic activity of chromium(III) complexes of metformin Schiff-bases. J Mol Struct 1108:60–70CrossRefGoogle Scholar
  12. 12.
    Mahmoud MA, Zaitone SA, Ammar AM, Sallam SA (2017) Synthesis, spectral, thermal and insulin enhancing properties of oxovanadium(IV) complexes of metformin Schiff-bases. J Therm Anal Calorim 128:957–969CrossRefGoogle Scholar
  13. 13.
    Mahmoud MA, Ammar AA, Sallam SA (2017) Synthesis, characterization and toxicity of cu(II) complexes with metformin Schiff-bases. J Chin Adv Mat Soc 5:75–102Google Scholar
  14. 14.
    Taha ZA, Ajlouni AM, Al-Hassan KA, Hijazi AK, Faiq AB (2011) Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes. Spectrochim Acta A81:317–323CrossRefGoogle Scholar
  15. 15.
    Kapoor P, Fahmi N, Singh RV (2011) Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines. Spectrochim Acta A83:74–81CrossRefGoogle Scholar
  16. 16.
    Kostova I, Manolov I, Momekov G (2004) Cytotoxic activity of new neodymium (III) complexes of bis-coumarins. Eur J Med Chem 39:765–775CrossRefGoogle Scholar
  17. 17.
    Łyszczek R (2012) Hydrothermal synthesis, thermal and luminescent investigations of lanthanide(III) coordination polymers based on the 4,4′-oxybis(benzoate) ligand. J Therm Anal Calorim 108:1101–1110CrossRefGoogle Scholar
  18. 18.
    Yi-Bo Z, Yang N, Liu W-S, Tang N (2003) Synthesis, characterization and DNA-binding properties of La(III) complex of chrysin. J Inorg Biochem 97:258–264CrossRefGoogle Scholar
  19. 19.
    Wang ZM, Lin HK, Zhu SR, Liu TF, Zhou ZF, Chen YT (2000) Synthesis, characterization and cytotoxicity of lanthanum(III) complexes with novel 1,10-phenanthroline-2,9-bis-[agr]-amino acid conjugates. Anticancer Drug Des 15:405–411Google Scholar
  20. 20.
    Aime S, Crich SG, Gianolio E, Giovenzana GB, Tei L, Terreno E (2000) High sensitivity lanthanide(III) based probes for MR-medical imaging. Coord Chem Rev 250:1562–1597CrossRefGoogle Scholar
  21. 21.
    Figgis NB, Lewis J (1960) In: Lewis J, Wilkins RG (eds) The Magnetochemistry of complex compounds. Interscience, New YorkGoogle Scholar
  22. 22.
    Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord Chem Rev 7:81–122CrossRefGoogle Scholar
  23. 23.
    Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds: applications in coordination, organometallic, and bioinorganic chemistry, 5th edn. Wiley, New YorkGoogle Scholar
  24. 24.
    Kumar DS, Alexander V (1995) Macrocyclic complexes of lanthanides in identical ligand frameworks part 1. Synthesis of lanthanide(III) and yttrium(III) complexes of an 18-membered dioxatetraaza macrocycle. Inorg Chim Acta 238:63–71CrossRefGoogle Scholar
  25. 25.
    Ankolekar VN, Mahale VB (2000) Synthesis and Spectroscopic Investigations of Lanthanide(III) Nitrate Complexes with Ligands Obtained from 2,6-diformyl-4-methylphenol. Synth React Inorg Met-Org Chem 30:1193–1209CrossRefGoogle Scholar
  26. 26.
    Alaudeen M, Prabhakaran CP (1996) Synthesis and characterization of iron(III) complexes of N-(2-thienylidene )-N'-isonicotinoylhydrazine, N-(2-furylidene)-N'-salicyloylhydrazine and N-(2-thienylidene)-N'-salicyloylhydrazine. Indian J Chem A35:517–519Google Scholar
  27. 27.
    Muraleedharan Nair MK, Radhakrishnan PK (1996) Synthesis and physicochemical studies of yttrium and lanthanide nitrate complexes of 1,2-(diimino-4-antipyrinyl)ethane. Proc Ind Acad Sci (Chem. Sci) 108:345–350Google Scholar
  28. 28.
    Pearson RG (1936) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  29. 29.
    Carlin RL (1986) Magnetochemistry. Springer, New YorkCrossRefGoogle Scholar
  30. 30.
    Tandon SP, Mehta PC (1970) Study of Some Nd3+ Complexes: Interelectronic Repulsion, Spin–Orbit Interaction, Bonding, and Electronic Energy Levels. J Chem Phys 52:4896–4902CrossRefGoogle Scholar
  31. 31.
    Ambroziak K, Rozwadowski Z, Dziembowska T, Bieg B (2002) Synthesis and spectroscopic study of Schiff bases derived from trans-1,2-diaminocyclohexane. Deuterium isotope effect on 13C chemical shift. J Mol Struct 615:109–120CrossRefGoogle Scholar
  32. 32.
    Issa RM, Khedr AM, Rizk HF (2005) UV–vis, IR and 1H NMR spectroscopic studies of some Schiff bases derivatives of 4-aminoantipyrine. Spectrochim Acta A62:621–629CrossRefGoogle Scholar
  33. 33.
    Jørgensen CK (1957) Absorption spectra of dysprosium(III), holmium(III), and erbium(III) Aquo ions. Acta Chem Scand 11:981–989CrossRefGoogle Scholar
  34. 34.
    Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels in the trivalent lanthanide Aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J Chem Phys 49:4424–4442CrossRefGoogle Scholar
  35. 35.
    Pandey UK, Pandey OP, Sengupta SK, Tripathi SC (1987) Syntheses and spectroscopic studies on TETRAAZA MACROCYCLIC complexes of praseodymium(iii). Polyhedron 6:1611–1617CrossRefGoogle Scholar
  36. 36.
    Davies GM, Aarons RJ, Motson GR, Jeffery JC, Adams H, Faulkner S, Ward MD (2004) Structural and near-IR photophysical studies on ternary lanthanide complexes containing poly(pyrazolyl)borate and 1,3-diketonate ligands. Dalton trans 1136-1144; Voloshin AI, Shavaleev NM, Kazakov VB (2001) luminescence of praseodymium (III) chelates from two excited states (3P0 and 1D2) and its dependence on ligand triplet state energy. J Lumin 93:199–204Google Scholar
  37. 37.
    Yan B, Zhang HJ, Zhou GL, Ni JZ (2003) Different thermal decomposition process of lanthanide complexes with N-phenylanthranilic acid in air and nitrogen atmosphere. Chem Pap 57:83–86Google Scholar
  38. 38.
    Carp O, Gingasu D, Mindru I, Patron L (2006) Thermal decomposition of some copper–iron polynuclear coordination compounds containing glycine as ligand, precursors of copper ferrite. Thermochim Acta 449:55–60CrossRefGoogle Scholar
  39. 39.
    Nyquist RA, Kagel RO (1971) Infrared spectra of inorganic compounds. Academic Press, New YorkCrossRefGoogle Scholar
  40. 40.
    Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69CrossRefGoogle Scholar
  41. 41.
    Frost AA, Pearson RG (1961) Kinetics and mechanism. Wiley, New YorkGoogle Scholar
  42. 42.
    Wells AF (1984) Structural inorganic chemistry, 5th edn. Science Publications, OxfordGoogle Scholar
  43. 43.
    Steiner M-S, Duerkop A, Wolfbies OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839CrossRefGoogle Scholar
  44. 44.
    Alptürk O, Rusin O, Fakayode SO, Wang W, Escobedo JO, Warner IM, Crowe WE, Král V, Pruet JM, Strongin RM (2006) Lanthanide complexes as fluorescent indicators for neutral sugars and cancer biomarkers. Proc Natl Acad Sci U S A 103:9756–9760CrossRefGoogle Scholar
  45. 45.
    Yang L, Su Y, Xu Y, Zhang S, Wu J, Zhao K (2004) Interactions between metal ions and carbohydrates: the coordination behavior of neutral erythritol to zinc and europium nitrate. J Inorg Biochem 98:1251–1260CrossRefGoogle Scholar
  46. 46.
    Battistini E, Mortillaro A, Aime S, Peters JA (2007) Molecular recognition of sugars by lanthanide (III) complexes of a conjugate of N, N-bis[2-[bis[2-(1, 1-dimethylethoxy)-2-oxoethyl]amino]ethyl]glycine and phenylboronic acid. Contrast Media Mol Imaging 2:163–171CrossRefGoogle Scholar
  47. 47.
    Lu Y, Deng G, Miao F, Li Z (2003) Metal ion interactions with sugars. The crystal structure and FT-IR study of the NdCl3–ribose complex. Carbohydr Res 338:2913–2919CrossRefGoogle Scholar
  48. 48.
    Wang W, Gao X, Wang B (2002) Boronic acid-based sensors. Curr Org Chem 6:1285–1317CrossRefGoogle Scholar
  49. 49.
    Benesi HA, Hildebrand JH (1949) A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J Am Chem Soc 71:2703–2707CrossRefGoogle Scholar
  50. 50.
    Springsteen G, Wang B (2002) A detailed examination of boronic acid–diol complexation. Tetrahedron 58:5291–5300CrossRefGoogle Scholar
  51. 51.
    Sun Y, Bi S, Song D, Qiao C, Mu D, Zhang H (2008) Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi. Sens Actuators B: Chem 129:799–810CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Science and Mathematics Engineering, Faculty of Petroleum and Mining EngineeringSuez UniversitySuezEgypt
  2. 2.Department of Chemistry, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt
  3. 3.Holding Company for Water & WastewaterIsmailiaEgypt

Personalised recommendations