Spectroscopic Evaluation of Novel Adenine/Thymine-Conjugated Naphthalenediimides: Preference of Adenine-Adenine over Thymine-Thymine Intermolecular Hydrogen Bonding in Adenine- and Thymine-Functionalized Naphthalenediimides

  • Digambara PatraEmail author
  • Nadine Al Homsi
  • Sara Jaafar
  • Zeina Neouchy
  • Jomana Elaridi
  • Ali Koubeissi
  • Kamal H. BouhadirEmail author


The synthesis and spectroscopic characterization of novel nucleobase (adenine/thymine)-conjugated naphthalenediimides (NDIs), namely, NDI-AA, NDI-TT, and NDI-AT have been successfully achieved. NDI-AA, NDI-TT and NDI-AT have similar absorption in the 300–400 nm region. The effect of solvent on the absorption spectrum indicates aggregation, either through intermolecular π-σ interaction among the main chromophore or through intermolecular hydrogen bonding between adenine and adenine group. Addition of water does not assist hydrogen bond formation between thymine-thymine, rather increasing the polarity of the solvent encourages π-σ interaction among NDI-TTs. No spectral change for NDI-TT with increasing temperature confirms hydrogen bonding is not playing a crucial role in NDI-TT. A fluorescence study on NDI-AA also establishes excimer formation along with ground state aggregation. As the water content in the solvent mixture increases, aggregation of NDI-AA is discouraged due to adenine-adenine hydrogen bonding in accordance with earlier results. At the same time, the NDI-TT emission spectrum does not shift to the blue region and the intensity of the peak around 535 nm increases at the expense of fluorescence in 411 nm. Thus, increasing water content in the solvent mixture facilitates aggregation through π-σ interaction in NDI-TT as thymine-thymine hydrogen bonding is less pronounced.


Naphthalenediimide Adenine Thymine Absorption Fluorescence Hydrogen bonding 



The authors are grateful to the Lebanese National Council for Scientific Research (LNCSR), the University Research Board (URB) and the Kamal Shair CRSL research fund at the American University of Beirut for financial support.

Supplementary material

10895_2018_2340_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1443 kb)


  1. 1.
    Bhosale SV, Jani CH, Langford SJ (2008) Chemistry of naphthalene diimides. Chem Soc Rev 37(2):331–342CrossRefGoogle Scholar
  2. 2.
    Vollmann H, Becker H, Corell M, Streeck H (1937) Beiträge zur Kenntnis des Pyrens und seiner Derivate. Justus Liebig’s Ann der Chemie 531(1):1–159CrossRefGoogle Scholar
  3. 3.
    Fallon GD, Lee MA-P, Langford SJ, Nichols PJ (2004) Unusual solid-state behavior in a neutral [2]catenane bearing a hydrolyzable component. Org Lett 6(5):655–658CrossRefGoogle Scholar
  4. 4.
    Hansen JG, Feeder N, Hamilton DG, Gunter MJ, Becher J, Sanders JKM (2000) Macrocyclization and molecular interlocking via Mitsunobu Alkylation: highlighting the role of C−H···O interactions in templating. Org Lett 2(4):449–452CrossRefGoogle Scholar
  5. 5.
    Vicic DA, Odom DT, Núñez ME, Gianolio DA, McLaughlin LW, Barton JK (2000) Oxidative repair of a thymine dimer in DNA from a distance by a covalently linked organic intercalator. J Am Chem Soc 122(36):8603–8611CrossRefGoogle Scholar
  6. 6.
    Mukhopadhyay P, Iwashita Y, Shirakawa M, Kawano S, Fujita N, Shinkai S (2006) Spontaneous colorimetric sensing of the positional isomers of dihydroxynaphthalene in a 1D organogel matrix. Angew Chem Int Ed 45(10):1592–1595CrossRefGoogle Scholar
  7. 7.
    Takenaka S, Yamashita K, Takagi M, Uto Y, Kondo H (2000) DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene Diimide as the electrochemically active ligand. Anal Chem 72(6):1334–1341CrossRefGoogle Scholar
  8. 8.
    Lee HN, Xu Z, Kim SK, Swamy KMK, Kim Y, Kim S-J, Yoon J (2007) Pyrophosphate-selective fluorescent chemosensor at physiological pH: formation of a unique excimer upon addition of pyrophosphate. J Am Chem Soc 129(13):3828–3829CrossRefGoogle Scholar
  9. 9.
    Katz HE, Lovinger AJ, Johnson J, Kloc C, Siegrist T, Li W, Lin Y-Y, Dodabalapur A (2000) A soluble and air-stable organic semiconductor with high electron mobility. Nature 404:478–481CrossRefGoogle Scholar
  10. 10.
    Brochsztain S, Rodrigues MA, Demets GJF, Politi MJ (2002) Stabilization of naphthalene-1,8:4,5-dicarboximide radicals in zirconium phosphonate solid materials and thin films. J Mater Chem 12(5):1250–1255CrossRefGoogle Scholar
  11. 11.
    Stewart WW (1981) Lucifer dyes—highly fluorescent dyes for biological tracing. Nature 292:17–21CrossRefGoogle Scholar
  12. 12.
    Das A, Molla MR, Ghosh S (2011) Comparative self-assembly studies and self-sorting of two structurally isomeric naphthalene-diimide (NDI)-gelators. J Chem Sci 123(6):963–973CrossRefGoogle Scholar
  13. 13.
    Würthner F, Ahmed S, Thalacker C, Debaerdemaeker T (2002) Core-substituted naphthalene bisimides: new fluorophors with tunable emission wavelength for FRET studies. Chem - A Eur J 8(20):4742–4750CrossRefGoogle Scholar
  14. 14.
    Narayanaswamy N, Avinash MB, Govindaraju T (2013) Exploring hydrogen bonding and weak aromatic interactions induced assembly of adenine and thymine functionalised naphthalenediimides. New J Chem 37(5):1302CrossRefGoogle Scholar
  15. 15.
    Das A, Ghosh S (2016) H-bonding directed programmed supramolecular assembly of naphthalene-diimide (NDI) derivatives. Chem Commun 52(42):6860–6872CrossRefGoogle Scholar
  16. 16.
    Hammud H, El-Dakdouki M, Sonji N, Bouhadir K (2010) Solvatochromic absorption and fluorescence studies of adenine, thymine and uracil thio-derived acyclonucleosides. Eur J Chem 1(2):325Google Scholar
  17. 17.
    Bouhadir KH, Koubeissi A, Mohsen FA, El-Harakeh MD, Cheaib R, Younes J, Azzi G, Eid AA (2016) Novel carbocyclic nucleoside analogs suppress glomerular mesangial cells proliferation and matrix protein accumulation through ROS-dependent mechanism in the diabetic milieu. II. Acylhydrazone-functionalized pyrimidines. Bioorg Med Chem Lett 26(3):1020–1024CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Digambara Patra
    • 1
    Email author
  • Nadine Al Homsi
    • 1
  • Sara Jaafar
    • 1
  • Zeina Neouchy
    • 1
  • Jomana Elaridi
    • 2
  • Ali Koubeissi
    • 1
  • Kamal H. Bouhadir
    • 1
    Email author
  1. 1.Department of ChemistryAmerican University of BeirutBeirutLebanon
  2. 2.Department of Natural SciencesLebanese American UniversityBeirutLebanon

Personalised recommendations