Journal of Fluorescence

, Volume 27, Issue 6, pp 2201–2212 | Cite as

Dansyl Based “Turn-On” Fluorescent Sensor for Cu2+ Ion Detection and the Application to Living Cell Imaging

  • Weerachai Nasomphan
  • Pramuan Tangboriboonrat
  • Srung Smanmoo
ORIGINAL ARTICLE
  • 287 Downloads

Abstract

A new “turn-on” fluorescent chemosensor based on dansyl derivative was prepared for Cu2+ ion sensing. Hydroxyl, imine and azomethine groups in Schiff base derived compound 1 were deliberately introduced for facilitating the binding of Cu2+ ion. Of screen metal ions, compound 1 showed a high degree of selectivity toward Cu2+ ion. Other interfering metal ions did not affect the fluorescence intensity of compound 1, except Hg2+ and Fe3+ ions exhibited a significant degree of fluorescence quenching. Upon binding of Cu2+ ion, compound 1 displayed a chelation enhanced fluorescence (CHEF) resulting in increasing of the fluorescence intensity. The molecular optimized geometry indicated the binding ratio between compound 1 and Cu2+ ion at 1:1 with the binding constant of 1.68 × 10− 7 M− 1. The optimized condition for sensing ability of compound 1 with a detection limit of 5 × 10− 7 M was found at the physiological pH 7.2 with the excitation wavelength of 366 nm. Due to no cytotoxicity and good photophysical properties, compound 1 was extended its application for the detection of Cu2+ ion in Vero cells. Compound 1 could be potentially used as an intracellular fluorescent chemosensor for tracking Cu2+ ion.

Graphical Abstract

Keywords

Schiff base Dansyl derivative Copper (II) ion Turn-on fluorescence Cell imaging 

Notes

Acknowledgements

Mahidol University grant to P.T. (14/2559) and Development and Promotion of Science and Technology Talents Project’s scholarship (DPST) to W.N. are gratefully acknowledged. We are also grateful to the support of S.S. from National Center for Genetic Engineering and Biotechnology (BIOTEC).

Supplementary material

10895_2017_2161_MOESM1_ESM.docx (600 kb)
Supplementary material 1 (DOCX 600 KB)

References

  1. 1.
    Hesse L, Beher D, Masters CL, Multhaup G (1994) The βA4 amyloid precursor protein binding to copper. FEBS Lett 349:109–116CrossRefPubMedGoogle Scholar
  2. 2.
    Multhaup G, Schlicksupp A, Hess L, Beher D, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper (II) to copper (I). Science 271:1406–1409CrossRefPubMedGoogle Scholar
  3. 3.
    Maynard CJ, Bush AI, Masters CL, Cappai R, Li Q-X (2005) Metals and amyloid-β in Alzheimer’s disease. Int J Exp Path 86:147–159CrossRefGoogle Scholar
  4. 4.
    Breslow E (1964) Comparison of cupric ion-binding sites in myoglobin derivatives and serum albumin. J Biol Chem 239:3252–3259PubMedGoogle Scholar
  5. 5.
    Zgirski A, Frieden E (1990) Binding of Cu(II) to non-prosthetic sites in ceruloplasmin and bovine serum albumin. J Inorg Biochem 39:137–148CrossRefPubMedGoogle Scholar
  6. 6.
    Luk CK (1971) Study of the nature of the metal-binding sites and estimate of the distance between the metal-binding sites in transferrin using trivalent lanthanide ions as fluorescent probe. BioChemistry 10:2838–2843CrossRefGoogle Scholar
  7. 7.
    McClure DS (1952) Spin-orbit interaction in aromatic molecules. J Chem Phys 20:682–686CrossRefGoogle Scholar
  8. 8.
    Rurack K, Resch-Genger U, Rettig W (1998) Global analysis of time-resolved emission – a powerful tool for the analytical discrimination of chemically similar ZnII and CdII complexes. J Photochem Photobiol A Chem 118:143–149CrossRefGoogle Scholar
  9. 9.
    Martinez R, Zapata F, Caballero A, Espinosa A, Tarraga A, Molina P (2006) 2-Aza-1,3-butadiene derivatives featuring an anthracene or pyrene unit: highly selective colorimetric and fluorescent signaling of Cu2+ cation. Org Lett 8:3235–3238CrossRefPubMedGoogle Scholar
  10. 10.
    Li G-K, Xu Z-X, Chen C-F, Huang Z-T (2008) A highly efficient and selective turn-on fluorescent sensor for Cu2+ ion based on calix[4]arene bearing four iminoquinoline subunits on the upper rim. Chem Commun 1774–1776Google Scholar
  11. 11.
    Abalos T, Jimenez D, Martines-Manez R, Ros-Lis JV, Royo S, Sancenon F, Soto J, Costero A, Gil M, Parra S (2009) Hg2+ and Cu2+ selective detection using a dual channel receptor based on thiopyrylium scaffoldings. Tetrahedron Lett 50:3885–3888CrossRefGoogle Scholar
  12. 12.
    Ueno A, Minato S, Suzuki I, Fukushima M, Ohkubo M, Osa T, Hamada F, Murai K (1990) Host–guest sensory system of dansyl-modifled β-cyclodextrin for detecting steroidal compounds by dansyl fluorescence. Chem Lett 19:605–608CrossRefGoogle Scholar
  13. 13.
    Wang Y, Ikeda T, Ueno A, Toda F (1992) Syntheses and molecular recognition abilities of 6-O-, 2-O-, and 3-O-dansyl-γ-cyclodextrins. Chem Lett 5:863–866CrossRefGoogle Scholar
  14. 14.
    Hamada F, Kondo Y, Ito R, Suzuki I, Osa T, Ueno A (1993) Dansyl-modified 7-cyclodextrin as a fluorescent sensor for molecular recognition. J Incl Phenom 15:273–279CrossRefGoogle Scholar
  15. 15.
    Wang Y, Ikeda T, Ueno A, Toda F (1994) Dansyl-β-cyclodextrins as fluorescent sensors responsive to organic compounds. Bull Chem Soc Jpn 67:1598–1607CrossRefGoogle Scholar
  16. 16.
    Nakamura M, Ikeda T, Nakamura A, Ikeda H, Ueno A, Toda F (1995) Remarkable molecular recognition of dansyl-modified cyclodextrin dimer. Chem Lett 24:343–344CrossRefGoogle Scholar
  17. 17.
    Nakamura M, Ikeda A, Ise N, Ikeda T, Ikeda H, Toda F, Ueno A (1995) Dansyl-modified β-cyclodextrin with a monensin residue as a hydrophobic, metal responsive cap. J Chem Soc Chem Commun 721–722Google Scholar
  18. 18.
    Aksuner N, Henden E, Yilmaz I, Cukurovali A (2009) A highly sensitive and selective fluorescent sensor for the determination of copper(II) based on a schiff base. Dyes Pigm 83:211–217CrossRefGoogle Scholar
  19. 19.
    Chen H, Wu Y, Cheng Y, Yang H, Li F, Yang P (2007) A ratiometric fluorescent sensor for zinc(II) with high selectivity. Inorg Chem Commun 10:1413–1415CrossRefGoogle Scholar
  20. 20.
    Sousa C, Gameiro P, Freire C, Castro B (2004) Nickel (II) and copper (II) Schiff base complexes bearing benzo-15-crown-5 functionalities as probes for spectroscopic recognition of lanthanide ions. Polyhedron 23:1401–1408CrossRefGoogle Scholar
  21. 21.
    Bhatt KD, Gupte HS, Makwana BA (2012) Calix receptor edifice; scrupulous turn off fluorescent sensor. J Fluoresc 22:1493–1500CrossRefPubMedGoogle Scholar
  22. 22.
    Bhatt KD, Makwana BA, Vyas DJ (2014) Selective recognition by novel calix system: ICT based chemosensor for metal ions. J Lumin 146:450–457CrossRefGoogle Scholar
  23. 23.
    Liu L, Wang A, Wang G, Li J, Zhou Y (2015) A naphthopyran-rhodamine based fluorescent and colorimetric chemosensor for recognition of common trivalent metal ions and Cu2+ ions. Sens Actuators B 215:388–395CrossRefGoogle Scholar
  24. 24.
    Yu MM, Li ZX, Wei LH, Wei DH, Tang MS (2008) A 1,8-naphthyridine-based fluorescent chemodosimeter for the rapid detection of Zn2+ and Cu2+. Org Lett 10:5115–5118CrossRefPubMedGoogle Scholar
  25. 25.
    Martinez R, Espinosa A, Tarraga A, Molina P (2010) A new bis(pyrenyl)azadiene-based probe for the colorimetric and fluorescent sensing of Cu(II) and Hg(II). Tetrahedron 66:3662–3667CrossRefGoogle Scholar
  26. 26.
    Franzen S, Ni W, Wang B (2003) Study of the mechanism of electron-transfer quenching by boron-nitrogen adducts in fluorescent sensors. J Phys Chem B 107:12942–12948CrossRefGoogle Scholar
  27. 27.
    Föll RE, Kramer HEA (1990) Role of charge transfer and spin-orbit coupling in fluorescence quenching. a case study with oxonine and substituted benzenes. J Phys Chem 94:2476–2487CrossRefGoogle Scholar
  28. 28.
    Uyanik I, Oguz M, Bhatti AA, Uyanik A, Yilmaz M (2017) A new piperidine derivatized-Schiff base based “turn-on” Cu2+ chemo-sensor. J Fluoresc 27:791–797CrossRefPubMedGoogle Scholar
  29. 29.
    Liu Z-C, Yang Z-Y, Li T-R, Wang B-D, Li Y, Qin D-D, Wang M-F, Yan M-H (2011) An effective Cu (II) quenching fluorescence sensor in aqueous solution and 1D chain coordination polymerframework. Dalton Trans 40:9370–9373CrossRefPubMedGoogle Scholar
  30. 30.
    García-Beltrán O, Cassels BK, Pérez C, Mena N, Núñez MT, Martínez NP, Pavez P, Aliaga ME (2014) Coumarin-based fluorescent probes for dual recognition of copper (II) and iron (III) ions and their application in bio-Imaging. Sensors 14:1358–1371CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ghiggino KP, Lee AG, Meech SR, O’Connor DV, Phillips D (1981) Time-resolved emission spectroscopy of the dansyl fluorescence probe. BioChemistry 20:5381–5389CrossRefPubMedGoogle Scholar
  32. 32.
    Ghisaidoobe ABT, Chung SJ (2014) Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Int J Mol Sci 15:22518–22538CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen QY, Chen CF (2005) A new Hg2+ selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown. Tetrahedron Lett 46:165–168CrossRefGoogle Scholar
  34. 34.
    Schonefeld K, Ludwig R, Feller KH (2006) Fluorescence studies of host-guest interaction of a dansyl amide labelled Calix[6]arene. J Fluoresc 16:449–454CrossRefPubMedGoogle Scholar
  35. 35.
    Beyeh NK, Aumanen J, Ahman A, Luostarinen M, Mansikkamaki H, Nissinen M, Tommola JK, Rissanen K (2007) Dansylated resorcinarenes. New J Chem 31:370–376CrossRefGoogle Scholar
  36. 36.
    Talanova GG, Talanov VS (2010) Dansyl-containing fluorogenic calixarenes as optical chemosensors of hazardous metal ions: a mini-review. Supramol Chem 22:838–852CrossRefGoogle Scholar
  37. 37.
    Yan J, Fan L, Qin J, Li C, Yang Z (2016) A novel chromone Schiff-base fluorescent chemosensor for Cd (II) based on C = N isomerization. J Fluoresc 26:1059–1065CrossRefPubMedGoogle Scholar
  38. 38.
    Vardhan H, Mehta A, Nath I, Verpoort F (2015) Dynamic imine chemistry in metal–organic polyhedra. RSC Adv 5:67011–67030CrossRefGoogle Scholar
  39. 39.
    Ozkan G, Kose M, Zengin H, McKee V, Kurtoglu M (2015) A new Salen-type azo-azomethine ligand and its Ni(II), Cu(II) and Zn(II) complexes: synthesis, spectral characterization, crystal structure and photoluminescence studies. Spectrochim Acta A Mol Biomol Spectrosc 150:966–973CrossRefPubMedGoogle Scholar
  40. 40.
    Armbruster DA, Tillman MD, Hubbs LM (1994) Limit of detection (LOD)/limit of quantitation (LOQ): comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs. Clin Chem 40:1233–1238PubMedGoogle Scholar
  41. 41.
    Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst 108:1067–1071CrossRefGoogle Scholar
  42. 42.
    Oter O, Ertekin K, Kihncarslan R, Ulusoy M, Cetinkaya B (2007) Photocharacterization of a novel fluorescent Schiff base and investigation of its utility as an optical Fe3+ sensor in PVC matrix. Dyes Pigm 74:730–735CrossRefGoogle Scholar
  43. 43.
    Chen Q, Tang S, Jin X, Zou J, Chen K, Zhang T, Xiao X (2009) Investigation of the genotoxicity of quinocetone, carbadox and olaquindox in vitro using Vero cells. Food Chem Toxicol 47:328–334CrossRefPubMedGoogle Scholar
  44. 44.
    Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108:1067–1071CrossRefGoogle Scholar
  45. 45.
    Pandey S, Rattan A, Singh M (2011) Evaluation the intermediate results of the QuantiFERON-TB gold in-tube test. Curr Res Tuberc 3:16–19CrossRefGoogle Scholar
  46. 46.
    Chung YM, Raman B, Kim D-S, Ahn KH (2006) Fluorescence modulation in anion sensing by introducing intramolecular H-bonding interactions in host–guest adducts. Chem Commun 186–188Google Scholar
  47. 47.
    O’Connor NA, Sakata ST, Zhu H, Shea KJ (2006) Chemically modified dansyl probes: a fluorescent diagnostic for ion and proton detection in solution and in polymers. Org Lett 8:1581–1584CrossRefPubMedGoogle Scholar
  48. 48.
    Lee MH, Kim HJ, Yoon S, Park N, Kim JS (2008) Metal ion induced FRET OFF – ON in Tren/Dansyl-appended rhodamine. Org Lett 10:213–216CrossRefPubMedGoogle Scholar
  49. 49.
    Alam R, Mistri T, Mondal P, Das D, Mandal SK, Khuda-Bukhsh AR, Ali M (2014) A novel copper (II) complex as a nitric oxide turn-on fluorosensor: intracellular applications and DFT calculation. Dalton Trans 43:2566–2576CrossRefPubMedGoogle Scholar
  50. 50.
    Zheng Y, Orbulescu J, Ji X, Andreopoulos FM, Pham SM, Leblanc RM (2003) Development of fluorescent film sensors for the detection of divalent copper. J Am Chem Soc 125:2680–2686CrossRefPubMedGoogle Scholar
  51. 51.
    Gonzàlez-Jimènez J, Frutos G, Cayre I (1992) Fluorescence quenching of human serum albumin by xanthines. Biochem Pharmacol 44:824–826CrossRefPubMedGoogle Scholar
  52. 52.
    Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256:170–192CrossRefGoogle Scholar
  53. 53.
    Wu J-S, Liu W-M, Zhuang X-Q, Wang F, Wang P-F, Tao S-L, Zhang X-H, Wu S-K, Lee S-T (2007) Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on CN isomerization. Org Lett 9:33–36CrossRefPubMedGoogle Scholar
  54. 54.
    Wu J, Liu W, Ge J, Zhang H, Wang P-F (2011) Newsensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495CrossRefPubMedGoogle Scholar
  55. 55.
    Karstens T, Kobs K (1980) Rhodamine B and Rhodamine 101 as reference substances for fluorescence quantum yield measurement. J Phys Chem 84:1871–1872CrossRefGoogle Scholar
  56. 56.
    Marsh M, Mcmahon HT (1999) The structural era of endocytosis. Science 9:215–220CrossRefGoogle Scholar
  57. 57.
    Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X (2013) Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep 3:1–8Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Weerachai Nasomphan
    • 1
  • Pramuan Tangboriboonrat
    • 1
  • Srung Smanmoo
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceMahidol UniversityBangkokThailand
  2. 2.Bio-Organic Chemistry UnitNational Center for Genetic Engineering and Biotechnology (BIOTEC)Klong LuangThailand

Personalised recommendations