Journal of Fluorescence

, Volume 27, Issue 6, pp 2131–2144 | Cite as

Carbazole Substituted BODIPYs: Synthesis, Computational, Electrochemical and DSSC Studies

  • Praseetha E. Kesavan
  • Raghu Nath Behera
  • Shigeki Mori
  • Iti Gupta


Carbazole and p-anisyl substituted BODIPY dyes with a cyanoacetic acid anchoring group have been prepared and their spectral, electrochemical properties and photosensitizing potential in DSSC have been evaluated. X-ray structure of N-phenylcarbazole substituted BODIPY revealed lower torsion angle between BODIPY plane and carbazole plane, suggesting increased communication between the two units. DFT studies indicated effective electronic interactions between the BODIPY unit and carbazole substituents. The N-butylcarbazole and N-phenylcarbazole substituted BODIPYs showed anodic shifts in their reduction potentials, indicating facile reduction process. The predicted HOMO–LUMO gaps are in agreement with the electrochemical result and the lower band gap was observed for the carbazole substituted BODIPYs.


BODIPYs Carbazole-BODIPYs X-ray structure DFT studies DSSC studies Cyclic voltammetry 



Financial support from SERB (EMR/2015/000779) Govt. of India is greatly acknowledged. PEK thanks IIT Gandhinagar for fellowship and infrastructural support. IG is appreciative to Prof. H. Furuta, Kyushu University for X-ray analysis. IG acknowledges Prof. Y. Xie, East China University for photovoltaic studies. RNB acknowledges the DST-FIST supported computational facility of the chemistry department, BITS Pilani-K K Birla Goa Campus.

Supplementary material

10895_2017_2152_MOESM1_ESM.docx (8.7 mb)
The characterization data like HRMS, 1H, 13C, NMR spectra, CIF file of BODIPY 7 and the B3LYP/6-31G(d) gas phase optimized geometry of the compounds 10–12 are available as supporting information. Also, the total energy and coordinates used for DFT calculations of compounds 10–12 are provided. (DOCX 8919 KB)


  1. 1.
    Schiermeier Q, Tollefson J, Scully T, Witze A, Morton O (2008) Energy alternatives: electricity without carbon. Nature 454:816–823. doi: 10.1038/454816a CrossRefPubMedGoogle Scholar
  2. 2.
    Khoo HH, Tan RBH (2006) Environmental impact evaluation of conventional fossil fuel production (oil and natural gas) and enhanced resource recovery with potential CO2 sequestration. Energy Fuel 20(5):1914–1924. doi: 10.1021/ef060075+ CrossRefGoogle Scholar
  3. 3.
    Zhu K, Miyasaka T, Kim JY, Mora-Seró I (2015) Trend of perovskite solar cells: dig deeper to build higher. J Phys Chem Lett 6(12):2315–2317. doi: 10.1021/acs.jpclett.5b01033 CrossRefPubMedGoogle Scholar
  4. 4.
    O’Regan B, Graetzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. doi: 10.1038/353737a0 CrossRefGoogle Scholar
  5. 5.
    Macaira J, Mesquita I, Andrade L, Mendes A (2015) Role of temperature in the recombination reaction on dye-sensitized solar cells. Phys Chem Chem Phys 17(35):22699–22710. doi: 10.1039/c5cp02942b CrossRefPubMedGoogle Scholar
  6. 6.
    Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851. doi: 10.1021/ic0508371 CrossRefPubMedGoogle Scholar
  7. 7.
    Grätzel M (2001) Molecular photovoltaics that mimic photosynthesis. Pure Appl Chem 73:459–467CrossRefGoogle Scholar
  8. 8.
    He J, Hagfeldt A, Lindquist S-E, Grennberg H, Korodi F, Sun L, Åkermark B (2001) Phthalocyanine-sensitized nanostructured TiO2 electrodes prepared by a novel anchoring method. Langmuir 17(9):2743–2747. doi: 10.1021/la001651b CrossRefGoogle Scholar
  9. 9.
    Hagfeldt A, Grätzel M (2000) Molecular photovoltaics. Acc Chem Res 33(5):269–277. doi: 10.1021/ar980112j CrossRefPubMedGoogle Scholar
  10. 10.
    Lakshmi V, Rajeswara Rao M, Ravikanth M (2015) Halogenated boron-dipyrromethenes: synthesis, properties and applications. Org Biomol Chem 13(9):2501–2517. doi: 10.1039/c4ob02293a CrossRefPubMedGoogle Scholar
  11. 11.
    Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47(7):1184–1201. doi: 10.1002/anie.200702070 CrossRefGoogle Scholar
  12. 12.
    Vedamalai M, Kedaria D, Vasita R, Mori S, Gupta I (2016) Design and synthesis of BODIPY-clickate based Hg2+ sensors: the effect of triazole binding mode with Hg2+ on signal transduction. Dalton Trans 45(6):2700–2708. doi: 10.1039/c5dt04042f CrossRefPubMedGoogle Scholar
  13. 13.
    Ni Y, Wu J (2014) Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org Biomol Chem 12(23):3774–3791. doi: 10.1039/c3ob42554a CrossRefPubMedGoogle Scholar
  14. 14.
    Nguyen QPB, Hwang HM, Song M-S, Song HJ, Kim GH, Kwon JH, Shim NY, Chai KY (2014) Synthesis and electroluminescent properties of OLED green dopants based on BODIPY derivatives. Bull Korean Chem Soc 35(4):1247–1250. doi: 10.5012/bkcs.2014.35.4.1247 CrossRefGoogle Scholar
  15. 15.
    Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K (2013) BODIPY dyes in photodynamic therapy. Chem Soc Rev 42(1):77–88. doi: 10.1039/c2cs35216h CrossRefPubMedGoogle Scholar
  16. 16.
    Hattori S, Ohkubo K, Urano Y, Sunahara H, Nagano T, Wada Y, Tkachenko NV, Lemmetyinen H, Fukuzumi S (2005) Charge separation in a nonfluorescent donor—acceptor dyad derived from boron dipyrromethene dye, leading to photocurrent generation. J Phys Chem B 109(32):15368–15375. doi: 10.1021/jp050952x CrossRefPubMedGoogle Scholar
  17. 17.
    Kubo Y, Eguchi D, Matsumoto A, Nishiyabu R, Yakushiji H, Shigaki K, Kaneko M (2014) Boron-dibenzopyrromethene-based organic dyes for application in dye-sensitized solar cells. J Mater Chem A 2(15):5204–5211. doi: 10.1039/c3ta15340a CrossRefGoogle Scholar
  18. 18.
    Erten-Ela S, Yilmaz MD, Icli B, Dede Y, Icli S, Akkaya EU (2008) A panchromatic boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells. Org Lett 10(15):3299–3302. doi: 10.1021/ol8010612 CrossRefPubMedGoogle Scholar
  19. 19.
    Wang J-B, Fang X-Q, Pan X, Dai S-Y, Song Q-H (2012) New 2, 6-modified bodipy sensitizers for dye-sensitized solar cells. Chem Asian J 7(4):696–700. doi: 10.1002/asia.201100779 CrossRefPubMedGoogle Scholar
  20. 20.
    Boens N, Verbelen B, Dehaen W (2015) Postfunctionalization of the BODIPY core: synthesis and spectroscopy. Eur J Org Chem 30:6577–6595. doi: 10.1002/ejoc.201500682 CrossRefGoogle Scholar
  21. 21.
    Lakshmi V, Chatterjee T, Ravikanth M (2014) Lewis acid assisted decomplexation of F-BODIPYs to dipyrrins. Eur J Org Chem 2014(10):2105–2110. doi: 10.1002/ejoc.201301662 CrossRefGoogle Scholar
  22. 22.
    Lakshmi V, Ravikanth M (2013) Synthesis of conjugated BODIPYs via the Wittig reaction. J Org Chem 78(10):4993–5000. doi: 10.1021/jo4006969 CrossRefPubMedGoogle Scholar
  23. 23.
    Ooyama Y, Hagiwara Y, Mizumo T, Harima Y, Ohshita J (2013) Photovoltaic performance of dye-sensitized solar cells based on D-π-A type BODIPY dye with two pyridyl groups. New J Chem 37(8):2479–2485. doi: 10.1039/c3nj00456b CrossRefGoogle Scholar
  24. 24.
    Ooyama Y, Hagiwara Y, Oda Y, Fukuoka H, Ohshita J (2014) BODIPY dye possessing solid-state red fluorescence and green metallic luster properties in both crystalline and amorphous states. RSC Adv 4(3):1163–1167. doi: 10.1039/c3ra45785k CrossRefGoogle Scholar
  25. 25.
    Kesavan PE, Gupta I (2014) Carbazole substituted boron dipyrromethenes. Dalton Trans 43(32):12405–12413. doi: 10.1039/c4dt01160k CrossRefPubMedGoogle Scholar
  26. 26.
    Kesavan PE, Das S, Lone MY, Jha PC, Mori S, Gupta I (2015) Bridged bis-BODIPYs: their synthesis, structures and properties. Dalton Trans 44(39):17209–17221. doi: 10.1039/c5dt01925g CrossRefPubMedGoogle Scholar
  27. 27.
    Kim J, Ko HM, Cho N, Paek S, Lee JK, Ko J (2012) Efficient small molecule organic semiconductor containing bis-dimethylfluorenyl amino benzo[b]thiophene for high open circuit voltage in high efficiency solution processed organic solar cell. RSC Adv 2(7):2692–2695. doi: 10.1039/c2ra01271e CrossRefGoogle Scholar
  28. 28.
    Singh SP, Gayathri T (2014) Evolution of BODIPY dyes as potential sensitizers for dye-sensitized solar cells. Eur J Org Chem 2014(22):4689–4707. doi: 10.1002/ejoc.201400093 CrossRefGoogle Scholar
  29. 29.
    Hong W, Sun B, Aziz H, Park W-T, Noh Y-Y, Li Y (2012) A conjugated polyazine containing diketopyrrolopyrrole for ambipolar organic thin film transistors. Chem Commun 48(67):8413–8415. doi: 10.1039/c2cc33998f CrossRefGoogle Scholar
  30. 30.
    Xie Y, Tang Y, Wu W, Wang Y, Liu J, Li X, Tian H, Zhu W-H (2015) Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: a record for non-ruthenium solar cells based on iodine electrolyte. J Am Chem Soc 137(44):14055–14058. doi: 10.1021/jacs.5b09665 CrossRefPubMedGoogle Scholar
  31. 31.
    Kaneza N, Zhang J, Liu H, Archana PS, Shan Z, Vasiliu M, Polansky SH, Dixon DA, Adams RE, Schmehl RH, Gupta A, Pan S (2016) Electrochemical and spectroscopic properties of boron dipyrromethene–thiophene–triphenylamine-based dyes for dyesensitized solar cells. J Phys Chem C (120):9068 – 9080. doi: 10.1021/acs.jpcc.6b01611
  32. 32.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  33. 33.
    Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129. doi: 10.1016/0301-0104(81)85090-2 CrossRefGoogle Scholar
  34. 34.
    Gaussian 09, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian, Inc., WallingfordGoogle Scholar
  35. 35.
    Ka J-W, Lee C-H (2000) Optimizing the synthesis of 5,10-disubstituted tripyrromethanes. Tetrahedron Lett 41(23):4609–4613. doi: 10.1016/S0040-4039(00)00672-9 CrossRefGoogle Scholar
  36. 36.
    Cui A, Peng X, Fan J, Chen X, Wu Y, Guo B (2007) Synthesis, spectral properties and photostability of novel boron–dipyrromethene dyes. J Photochem Photobiol A 186(1):85–92. doi: 10.1016/j.jphotochem.2006.07.015 CrossRefGoogle Scholar
  37. 37.
    Ren W, Zhuang H, Bao Q, Miao S, Li H, Lu J, Wang L (2014) Enhancing the coplanarity of the donor moiety in a donor-acceptor molecule to improve the efficiency of switching phenomenon for flash memory devices. Dyes Pigm 100:127–134.  10.1016/j.dyepig.2013.09.002 CrossRefGoogle Scholar
  38. 38.
    Xu TH, Lu R, Qiu XP, Liu XL, Xue PC, Tan CH, Bao CY, Zhao YY (2006) Synthesis and characterization of carbazole-based dendrimers with porphyrin cores. Eur J Org Chem 2006(17):4014–4020. doi: 10.1002/ejoc.200600356 CrossRefGoogle Scholar
  39. 39.
    Lee C-H, Lindsey SJ (1994) One-flask synthesis of meso-substituted dipyrromethanes and their application in the synthesis of trans-substituted porphyrin building blocks. Tetrahedron 50(39):11427–11440. doi: 10.1016/S0040-4020(01)89282-6 CrossRefGoogle Scholar
  40. 40.
    Zhu S, Bi J, Vegesna G, Zhang J, Luo F-T, Valenzano L, Liu H (2013) Functionalization of BODIPY dyes at 2,6-positions through formyl groups. RSC Adv 3(14):4793–4800. doi: 10.1039/c3ra22610g CrossRefGoogle Scholar
  41. 41.
    Chang YJ, Chou P-T, Lin Y-Z, Watanabe M, Yang C-J, Chin T-M, Chow TJ (2012) Organic dyes containing oligo-phenothiazine for dye-sensitized solar cells. J Mater Chem 22(40):21704–21712. doi: 10.1039/c2jm35556f CrossRefGoogle Scholar
  42. 42.
    Kee HL, Kirmaier C, Yu L, Thamyongkit P, Youngblood WJ, Calder ME, Ramos L, Noll BC, Bocian DF, Scheidt WR, Birge RR, Lindsey JS, Holten D (2005) Structural control of the photodynamics of boron–dipyrrin complexes. J Phys Chem B 109(43):20433–20443. doi: 10.1021/jp0525078 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Khan TK, Jana SK, Rao MR, Shaikh MS, Ravikanth M (2012) Synthesis and electronic properties of meso-furyl boron dipyrromethenes. Inorg Chim Acta 383:257–266. doi: 10.1016/j.ica.2011.11.017 CrossRefGoogle Scholar
  44. 44.
    Cakmak Y, Kolemen S, Buyuktemiz M, Dede Y, Erten-Ela S (2015) Synthesis and dye sensitized solar cell applications of Bodipy derivatives with bis-dimethylfluorenyl amine donor groups. New J Chem 39(5):4086–4092. doi: 10.1039/c4nj02393e CrossRefGoogle Scholar
  45. 45.
    Wang C-L, Chang Y-C, Lan C-M, Lo C-F, Wei-Guang Diau E, Lin C-Y (2011) Enhanced light harvesting with p-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells. Energy Environ Sci 4(5):1788–1795. doi: 10.1039/c0ee00767f CrossRefGoogle Scholar
  46. 46.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100CrossRefGoogle Scholar
  47. 47.
    Becke DA (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. doi: 10.1063/1.464913 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Praseetha E. Kesavan
    • 1
  • Raghu Nath Behera
    • 2
  • Shigeki Mori
    • 3
  • Iti Gupta
    • 1
  1. 1.Indian Institute of Technology GandhinagarGandhinagarIndia
  2. 2.Department of ChemistryBITS Pilani-K K Birla Goa CampusZuarinagarIndia
  3. 3.Integrated Centre for SciencesEhime UniversityMatsuyamaJapan

Personalised recommendations