Journal of Fluorescence

, Volume 27, Issue 1, pp 125–134 | Cite as

Synthesis of Water Dispersible Fluorescent Carbon Nanocrystals from Syzygium cumini Fruits for the Detection of Fe3+ Ion in Water and Biological Samples and Imaging of Fusarium avenaceum Cells

  • Jigna R. Bhamore
  • Sanjay Jha
  • Rakesh Kumar Singhal
  • Suresh Kumar KailasaEmail author


In this work, water dispersible fluorescent carbon nanocrystals (NCs) were synthesized by a simple, green and low cost hydrothermal method using Syzygium cumini (jamun) as a carbon source at 180 °C for 6 h. The average size of carbon NCs was found to be 2.1 ± 0.5 nm and shown bright blue fluorescence when excited at 365 nm under UV lamp. The carbon NCs were characterized by spectroscopic (UV-visible and fluorescence, Fourier transform infrared and dynamic light scattering) and high resolution transmission electron microscopic techniques. The quantum yield of carbon NCs was found to be ~5.9 % at 438 nm emission wavelength when excited at 360 nm. It was noticed that none of the metal ions quenched the fluorescence intensity of carbon NCs at 438 nm except for Fe3+, indicating the formation of Fe3+ ion-carbon NCs complexes. The linear range was observed in the concentration range of 0.01–100 μM with the corresponding detection limits of 0.001 μM, respectively. Furthermore, the carbon NCs were used as probes for imaging of fungal (Fusarium avenaceum) cells.


Fluorescent carbon NCs Fe3+ ion HR-TEM UV-visible Fluorescence spectrometry and cell imaging 



Ms. Jigna Bhamore gratefully acknowledges S. V. National Institute of Technology, Surat, for FIR Ph.D fellowship. Authors thank Department of Science and Technology (Ref. No. SR/FT/CS-54/2010), S. V. National Institute of Technology (Ref. No: Dean(R&C)/1503/2013-2014), Surat and Board of Research in Nuclear Science (Ref. No: 37(2) 14/07/2015/BRNS/10401) for financial support to this work.

Supplementary material

10895_2016_1940_MOESM1_ESM.ppt (306 kb)
ESM 1 (PPT 305 kb)


  1. 1.
    Yang ST, Wang X, Wang H, Lu F, Luo PG, Cao L, Meziani MJ, Liu JH, Liu Y, Chen M (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. Phys Chem C 113:18110–18114CrossRefGoogle Scholar
  2. 2.
    Fowley C, McCaughan B, Devlin A, Yildiz I, Raymo FM, Callan JF (2012) Highly luminescent biocompatible carbon quantum dots by encapsulation with an amphiphilic polymer. Chem Commun 48:9361–9363CrossRefGoogle Scholar
  3. 3.
    Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Chem Int Ed 49:6726–6744CrossRefGoogle Scholar
  4. 4.
    Avouris P (2002) Molecular electronics with carbon nanotubes. Acc Chem Res 35:1026–1034CrossRefPubMedGoogle Scholar
  5. 5.
    Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657CrossRefPubMedGoogle Scholar
  6. 6.
    Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46:6473–6475CrossRefGoogle Scholar
  7. 7.
    Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yang ST, Cao L, Luo PGJ, Lu FS, Wang X, Wang HF, Meziani MJ, Liu YF, Qi G, Sun YP (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131:11308–11309CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cao L, Sahu S, Parambath A, Bunker CE, Xu JA, Fernando KAS, Wang P, Guliants EA, Tackett KN, Sun YP (2011) Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion beyond. J Am Chem Soc 133:4754–4757CrossRefPubMedGoogle Scholar
  10. 10.
    Wang F, Chen YH, Liu CY, Ma DG (2011) White light-emitting devices based on carbon dots’ electroluminescence. Chem Commun 47:3502–3504CrossRefGoogle Scholar
  11. 11.
    D'souza SL, Deshmukh B, Bhamore JR, Rawat KA, Lenka N, Kailasa SK (2016) Synthesis of fluorescent nitrogen-doped carbon dots from dried shrimps for cell imaging and boldine drug delivery system. RSC Adv 6:12169–12179CrossRefGoogle Scholar
  12. 12.
    Ando Y, Zhao X, Kataura H, Achiba Y, Kaneto K, Tsuruta M, Uemura S, Iijima S (2000) Multiwalled carbon nanotubes prepared by hydrogen arc. Diam Relat Mater 9:847–851CrossRefGoogle Scholar
  13. 13.
    Liu C, Zhao Z, Zhang R, Yang L, Wang Z, Yang J, Jiang H, Han MY, Liu B, Zhang Z (2015) Strong infrared laser ablation produces white-light-emitting materials via the formation of silicon and carbon dots in silica nanoparticles. J Phys Chem C 119:8266–8272CrossRefGoogle Scholar
  14. 14.
    Hou Y, Lu Q, Wang H, Li H, Zhang Y, Zhang S (2016) One-pot electrochemical synthesis of carbon dots/TiO2nanocomposites with excellent visible light photocatalytic activity. Mater Lett 173:13–17CrossRefGoogle Scholar
  15. 15.
    Duan J, Yu J, Feng S, Su L (2016) A rapid microwave synthesis of nitrogen-sulfur co-doped carbon nanodots as highly sensitive and selective fluorescence probes for ascorbic acid. Talanta 153:332–339CrossRefPubMedGoogle Scholar
  16. 16.
    Prasannan A, Imae T (2013) One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 52:15673–15678CrossRefGoogle Scholar
  17. 17.
    Wei J, Zhang X, Sheng Y, Shen J, Huang P, Guo S, Pan J, Feng B (2014) Dual functional carbon dots derived from corn flour via a simple one-pot hydro thermal route. Mater Lett 123:107–111CrossRefGoogle Scholar
  18. 18.
    Sahu S, Behera B, Maitib TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837CrossRefGoogle Scholar
  19. 19.
    Dai H, Shi Y, Wang Y, Sun Y, Hu J, Ni P, Li Z (2014) A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sensors Actuators B Chem 202:201–208CrossRefGoogle Scholar
  20. 20.
    Pei S, Zhang J, Gao M, Wua D, Yang Y, Liu R (2015) A facile hydrothermal approach towards photoluminescent carbon dots from amino acids. J Colloid Interface Sci 439:129–133CrossRefPubMedGoogle Scholar
  21. 21.
    Wang D, Wang X, Guo Y, Liu W, Qin W (2014) Luminescent properties of milk carbon dots and their Sulphur and nitrogen doped analogues. RSC Adv 4:51658–51665CrossRefGoogle Scholar
  22. 22.
    Mehta VN, Jha S, Kailasa SK (2014) One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C 38:20–27CrossRefGoogle Scholar
  23. 23.
    Mehta VN, Jha S, Singhal RK, Kailasa SK (2014) Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J Chem 2014:6152–6160CrossRefGoogle Scholar
  24. 24.
    Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK (2015) One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors Actuators B Chem 2015:434–443CrossRefGoogle Scholar
  25. 25.
    Braun V, Hantke K (2011) Recent insights into iron import by bacteria. Curr Opin Chem Biol 15:328–334CrossRefPubMedGoogle Scholar
  26. 26.
    Goswami T, Rolfs A, Hediger MA (2002) Iron transport: emerging roles in health and disease. Biochem Cell Biol 80:679–689CrossRefPubMedGoogle Scholar
  27. 27.
    Ghaedi M, Shokrollahi A, Kianfar AH, Mirsadeghi AS, Pourfarokhi A, Soylak M (2008) The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their separation-preconcentration on bis salicyl aldehyde, 1,3 propan diimine (BSPDI) loaded on activated carbon. J Hazard Mater 154:128–134CrossRefPubMedGoogle Scholar
  28. 28.
    Pomazal K, Prohaska C, Steffan I, Reich G, Huber JFK (1999) Determination of Cu, Fe, Mn, and Zn in blood fractions by SEC-HPLC-ICP-AES coupling. Analyst 124:657–663CrossRefPubMedGoogle Scholar
  29. 29.
    Spolaor A, Vallelonga P, Gabrieli J, Cozzi G, Boutronf C, Barbante C (2012) Determination of Fe2+ and Fe3+ species by FIA-CRC-ICP-MS in Antarctic ice samples. J Anal At Spectrom 27:310–317CrossRefGoogle Scholar
  30. 30.
    Yin BD, Deng JH, Peng X, Long Q, Zhao JN, Lu QJ, Chen Q, Tang H, Zhang YY, Yao SZ (2013) Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138:6551–6557CrossRefPubMedGoogle Scholar
  31. 31.
    Wang Q, Liu X, Zhang LC, Lv Y (2012) Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst 137:5392CrossRefPubMedGoogle Scholar
  32. 32.
    Yeh TY, Wang CI, Chang HT (2013) Photoluminescent C-dots@RGO for sensitive detection of hydrogen peroxide and glucose. Talanta 115:718–723CrossRefPubMedGoogle Scholar
  33. 33.
    Mao Y, Bao Y, Han DX, Li FH, Niu L (2012) Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosens Bioelectron 38:55–60CrossRefPubMedGoogle Scholar
  34. 34.
    Miao P, Tang Y, Hanab K, Wang B (2015) Facile synthesis of carbon nanodots from ethanol and their application in ferric (III) ion assay. J Mater Chem A 3:15068–15073CrossRefGoogle Scholar
  35. 35.
    Xu J, Zhou Y, Liu S, Dong M, Huang C (2014) Low-cost synthesis of carbon nanodots from natural products used as a fluorescent probe for the detection of ferrum(III) ions in lake water. Anal Methods 6:2086–2090CrossRefGoogle Scholar
  36. 36.
    Yu J, Song N, Zhang YK, Zhong SX, Wang AJ, Chen J (2015) Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+and Fe3+. Sensors Actuators B Chem 214:29–35CrossRefGoogle Scholar
  37. 37.
    Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y (2014) Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. 60:292–298Google Scholar
  38. 38.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  39. 39.
    Qin X, Lu W, Asiri AM, Al-Youbi AO, Sun X (2013) Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. Sensors Actuators B Chem 184:156–162CrossRefGoogle Scholar
  40. 40.
    Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M (2013) Green synthesis of biocompatible carbon dots using aqueous extract of T.Bispinosa peel. Mater Sci Eng C 33:2914–2917CrossRefGoogle Scholar
  41. 41.
    Ju J, Chen W (2014) Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens Bioelectron 58:219–225CrossRefPubMedGoogle Scholar
  42. 42.
    Chen Z, Lu DT, Zhang GM, Yang J, Dong C, Shuang SM (2014) Glutathione capped silver nanoclusters-based fluorescent probe for highly sensitive detection of Fe3+. Sensors Actuators B Chem 202:631–637CrossRefGoogle Scholar
  43. 43.
    Xu Q, Pu P, Zhao JG, Dong CB, Gao C, Chen YS, Chen JR, Liu Y, Zhou HJ (2015) Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J Mater Chem A 3:542–546CrossRefGoogle Scholar
  44. 44.
    Ananthanarayanan A, Wang XW, Routh P, Sana B, Lim S, Kim DH, Lim KH, Li J, Chen P (2014) Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv Funct Mater 24:3021–3026CrossRefGoogle Scholar
  45. 45.
    Wu SP, Chen YP, Sung YM (2011) Colorimetric detection of Fe3+ ions using pyrophosphate functionalized gold nanoparticles. Analyst 136:1887–1891CrossRefPubMedGoogle Scholar
  46. 46.
    Han C, Wang R, Wang K, Xu H, Sui M, Li J, Xu K (2016) Highly fluorescent carbon dots as selective and sensitive “on-off-on” probes for iron(III) ion and apoferritin detection and imaging in living cells. Biosens Bioelectron 83:229–236CrossRefPubMedGoogle Scholar
  47. 47.
    Shi B, Su Y, Zhang L, Huang M, Liu R, Zhao S (2016) Nitrogen and phosphorus Co-doped carbon Nanodots as a novel fluorescent probe for highly sensitive detection of Fe 3+ in human serum and living cells. ACS Appl Mater Interfaces 8:10717–10725Google Scholar
  48. 48.
    Bhamore J, Rawat KA, Basu H, Singhal RK, Kailasa SK (2015) Influence of molecular assembly and NaCl concentration on gold nanoparticles for colorimetric detection of cysteine and glutathione. Sensors Actuators B Chem 212:526–535CrossRefGoogle Scholar
  49. 49.
    Bhamore JR, Jha S, Mungara AK, Singhal RK, Sonkeshariya D, Kailasa SK (2016) One-step green synthetic approach for the preparation of multicolor emitting copper nanoclusters and their applications in chemical species sensing and bioimaging. Biosens Bioelectron 80:243–248CrossRefPubMedGoogle Scholar
  50. 50.
    Kasibabu BSB, D'souza SL, Jha S, Singhal RK, Basu H, Kailasa SK (2015) One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells. Anal Methods 7:2373–2378CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jigna R. Bhamore
    • 1
  • Sanjay Jha
    • 2
  • Rakesh Kumar Singhal
    • 3
  • Suresh Kumar Kailasa
    • 1
    Email author
  1. 1.Department of Applied ChemistryS. V. National Institute of TechnologySuratIndia
  2. 2.Gujarat Agricultural Biotechnology InstituteNavsari Agricultural UniversitySuratIndia
  3. 3.Analytical Chemistry DivisionBhabha Atomic Research CenterMumbaiIndia

Personalised recommendations