Journal of Fluorescence

, Volume 26, Issue 5, pp 1805–1812 | Cite as

Comprehensive DFT and TD-DFT Studies on the Photophysical Properties of 5,6-Dichloro-1,3-Bis(2-Pyridylimino)-4,7-Dihydroxyisoindole: A New Class of ESIPT Fluorophore

  • Santosh Kataria
  • Lydia Rhyman
  • Ponnadurai Ramasami
  • Nagaiyan Sekar


Hanson et al. [Org. Lett., 2011] reported the absorption and emission spectrum of 5,6-dichloro-1,3-bis(2-pyridylimino)-4,7-dihydroxyisoindole but the excited-state intramolecular proton transfer (ESIPT) process was not investigated. The photo-physical behaviour of 5,6-dichloro-1,3-bis(2-pyridylimino)-4,7-dihydroxyisoindole was studied using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The functional used was B3LYP and 6-31G(d) was the basis set for all the atoms. All the ten tautomers were studied for the absorption and emission properties. It is found that the tautomer where hydroxyl groups are syn to nitrogen of isoindoline ring is most stable and thus, responsible for the ESIPT process. The computed absorption and emission values of tautomers using TD-DFT are in good agreement with those obtained experimentally.


1,3-bis(2-pyridylimino) isoindoline (BPI) DFT TD-DFT ESIPT 



SK is thankful to UGC for giving study leave (FIP) and SIES college for sanctioning the study leave. PR and LR acknowledge facilities from the University of Mauritius.

Supplementary material

10895_2016_1872_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1129 kb)


  1. 1.
    Kasha BYM (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19. doi: 10.1039/df9500900014 CrossRefGoogle Scholar
  2. 2.
    Ireland JF, Wyatt PAH (1976) Acid-Base Properties of Electronically Excited States of Organic Molecules. Adv Phys Org Chem 12:131Google Scholar
  3. 3.
    Forster (1949) Fluoreszenzspektrum und Wasserstoffionen-konzentration. Naturwissenschaften 36:186–187. doi: 10.1007/BF00626582 CrossRefGoogle Scholar
  4. 4.
    Weller A (1961) A. Prog React KinetGoogle Scholar
  5. 5.
    Vander Donckt (1970) Prog React KinetGoogle Scholar
  6. 6.
    Schulman, SG (1970) Influence of ph in fluorescence and phosphorescence spectrometric analysis *. 17:607–616.Google Scholar
  7. 7.
    Kelly RNSS (1988) In Molecular LuminescenceSpectroscopy; Methods and Applications. Wiley -Interscience, New YorkGoogle Scholar
  8. 8.
    Smith TP, Zaklika KA, Thakur K, Barbara PF (1991) Excited state intramolecular proton transfer in 1-(acylamino)anthraquinones. J Am Chem Soc 113:4035–4036. doi: 10.1021/ja00010a079 CrossRefGoogle Scholar
  9. 9.
    Martinez, M. L.; Studer, S. L.;Chou P. (1991) Direct evidence of the excited state intramolecular proton transfer in 5-hydroxyflavone. 113:5881–5883.Google Scholar
  10. 10.
    Martinez ML, Studer SL, Chou PT (1990) Direct evidence of the triplet-state origin of the slow reverse proton transfer reaction of 3-hydroxyflavone. J Am Chem Soc 112:2427–2429. doi: 10.1021/ja00162a058 CrossRefGoogle Scholar
  11. 11.
    Catalan J, Fabero F, Soledad Guijarro M, et al. (1990) Photoinduced intramolecular proton transfer as the mechanism of ultraviolet stabilizers: a reappraisal. J Am Chem Soc 112:747–759. doi: 10.1021/ja00158a039 CrossRefGoogle Scholar
  12. 12.
    Brinn IM, Carvalho CEM, Heisel F, Miehe JA (1991) Excited-state acidity of bifunctional molecules. 2. Picosecond emission of 5-(2-hydroxyphenyl)-3-phenyl-1,2,4-oxadiazole. J Phys Chem 95:6540–6544. doi: 10.1021/j100170a031 CrossRefGoogle Scholar
  13. 13.
    Chou PT, Matinez ML, Cooper WC (1992) Direct evidence of excited-state intramolecular proton transfer in 2′-hydroxychalcone and photooxygenation forming 3-hydroxyflavone. J Am Chem Soc 114:4943–4944. doi: 10.1021/ja00038a091 CrossRefGoogle Scholar
  14. 14.
    Peteanu L a, Mathie R a (1992) Resonance raman intensity analysis of the excited-state proton transfer in. 96:6910–6916.Google Scholar
  15. 15.
    Chou P-T, Martinez ML, Cooper WC, et al. (1992) Monohydrate catalysis of excited-state double-proton transfer in 7-azaindole. J Phys Chem 96:5203–5205. doi: 10.1021/j100192a002 CrossRefGoogle Scholar
  16. 16.
    Lan X, Yang D, Sui X, Wang D (2013) Time-dependent density functional theory (TD-DFT) study on the excited-state intramolecular proton transfer (ESIPT) in 2-hydroxybenzoyl compounds: Significance of the intramolecular hydrogen bonding. Spectrochim Acta - Part A Mol Biomol Spectrosc 102:281–285. doi: 10.1016/j.saa.2012.10.017 CrossRefGoogle Scholar
  17. 17.
    Zhao J, Ji S, Chen Y, et al. (2012) Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys Chem Chem Phys 14:8803–8817. doi: 10.1039/c2cp23144a CrossRefPubMedGoogle Scholar
  18. 18.
    Chen C-L, Lin C-W, Hsieh C-C, et al. (2008) Dual excited-state intramolecular proton transfer reaction in 3-hydroxy-2-(pyridin-2-yl)-4H-chromen-4-one. J Phys Chem A 113:205–214. doi: 10.1021/jp809072a CrossRefGoogle Scholar
  19. 19.
    Chen K-Y, Hsieh C-C, Cheng Y-M, et al. (2006) Extensive spectral tuning of the proton transfer emission from 550 to 675 nm via a rational derivatization of 10-hydroxybenzo[h]quinoline. Chem Commun:4395–4397. doi: 10.1039/B610274C
  20. 20.
    Chen K-Y, Cheng Y-M, Lai C-H, et al. (2007) Ortho Green Fluorescence Protein Synthetic Chromophore; Excited-State Intramolecular Proton Transfer via a Seven-Membered-Ring Hydrogen-Bonding System. J Am Chem Soc 129:4534–4535. doi: 10.1021/ja070880i CrossRefPubMedGoogle Scholar
  21. 21.
    Schwartz BJ, Peteanu LA, Harris CB (1992) Direct observation of fast proton transfer: femtosecond photophysics of 3-hydroxyflavone. J Phys Chem 96:3591–3598. doi: 10.1021/j100188a009 CrossRefGoogle Scholar
  22. 22.
    Kasha M (1986) Proton-transfer Spectroscopy. J Chem Soc Faraday Trans 82:2379–2392CrossRefGoogle Scholar
  23. 23.
    Balzani V, Scandola F (1991) Supramolecular Photochemistry. Ellis HorwoodGoogle Scholar
  24. 24.
    Stephan JS, Rodríguez CR, Grellmann KH, Zachariasse KA (1994) Flash-photolysis of 2-(2′-hydroxyphenyl)-3-H-indole. Ground-state keto-enol tautomerization by mutual hydrogen exchange and by proton catalysis Chem Phys 186:435–446. doi: 10.1016/0301-0104(94)01624-0 Google Scholar
  25. 25.
    Jana S, Dalapati S, Guchhait N (2012) Proton Transfer Assisted Charge Transfer Phenomena in Photochromic Schi ff Bases and E ff ect of − NEt 2 Groups to the Anil Schi ff Bases. J Phys Chem A 116:10948CrossRefPubMedGoogle Scholar
  26. 26.
    Kwon JE, Park SY (2011) Advanced organic optoelectronic materials: Harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv Mater 23:3615–3642. doi: 10.1002/adma.201102046 CrossRefPubMedGoogle Scholar
  27. 27.
    Kim T-I, Kang HJ, Han G, et al. (2009) A highly selective fluorescent ESIPT probe for the dual specificity phosphatase MKP-6. Chem Commun (Camb) 2:5895–5897. doi: 10.1039/b911145j CrossRefGoogle Scholar
  28. 28.
    Xu Y, Pang Y (2010) Zinc binding-induced near-IR emission from excited-state intramolecular proton transfer of a bis ( benzoxazole ) derivative w. Chem Commun 46:4070–4072. doi: 10.1039/c003230a CrossRefGoogle Scholar
  29. 29.
    Dong D, Jing X, Zhang X, et al. (2012) Gadolinium(III)-fluorescein complex as a dual modal probe for MRI and fluorescence zinc sensing. Tetrahedron 68:306–310. doi: 10.1016/j.tet.2011.10.034 CrossRefGoogle Scholar
  30. 30.
    Yan L, Ye Z, Peng C, Zhang S (2012) A new perylene diimide-based fluorescent chemosensor for selective detection of ATP in aqueous solution. Tetrahedron 68:2725–2727. doi: 10.1016/j.tet.2012.01.028 CrossRefGoogle Scholar
  31. 31.
    Chen W, Wright BD, Pang Y (2012) Rational design of a NIR-emitting Pd(ii) sensor via oxidative cyclization to form a benzoxazole ring. Chem Commun 48:3824. doi: 10.1039/c2cc30240c CrossRefGoogle Scholar
  32. 32.
    Sun W, Li S, Hu R, et al. (2009) Understanding solvent effects on luminescent properties of a triple fluorescent ESIPT compound and application for white light emission. J Phys Chem A 113:5888–5895. doi: 10.1021/jp900688h CrossRefPubMedGoogle Scholar
  33. 33.
    Park S, Ji EK, Se HK, et al. (2009) A white-light-emitting molecule: Frustrated energy transfer between constituent emitting centers. J Am Chem Soc 131:14043–14049. doi: 10.1021/ja902533f CrossRefPubMedGoogle Scholar
  34. 34.
    Giordano L, Shvadchak VV, Fauerbach J a, et al. (2012) Highly solvatochromic 7-aryl-3-hydroxychromones. J Phys Chem Lett 3:1011–1016. doi: 10.1021/jz3002019 CrossRefPubMedGoogle Scholar
  35. 35.
    Kim S, Park SY (2003) Photochemically gated protonation effected by intramolecular hydrogen bonding: towards stable fluorescence imaging in polymer films. Adv Mater 15:1341–1344. doi: 10.1002/adma.200305050 CrossRefGoogle Scholar
  36. 36.
    Kim S, Park SY, Yoshida I, et al. (2002) Amplified spontaneous emission from the film of poly(aryl ether) dendrimer encapsulating excited-state intramolecular proton transfer dye. J Phys Chem B 106:9291–9294. doi: 10.1021/jp021048x CrossRefGoogle Scholar
  37. 37.
    Jayabharathi J, Thanikachalam V, Vennila M, Jayamoorthy K (2012) DFT based ESIPT process of luminescent chemosensor: Taft and Catalan solvatochromism. Spectrochim Acta - Part A Mol Biomol Spectrosc 95:589–595. doi: 10.1016/j.saa.2012.04.056 CrossRefGoogle Scholar
  38. 38.
    Kim CH, Joo T (2009) Coherent excited state intramolecular proton transfer probed by time-resolved fluorescence. Phys Chem Chem Phys 11:10266–10269. doi: 10.1039/b915768a CrossRefPubMedGoogle Scholar
  39. 39.
    Nayak MK (2012) Synthesis, characterization and optical properties of aryl and diaryl substituted phenanthroimidazoles. J Photochem Photobiol A Chem 241:26–37. doi: 10.1016/j.jphotochem.2012.05.018 CrossRefGoogle Scholar
  40. 40.
    Mitra S, Singh TS, Mandal a, Mukherjee S (2007) Experimental and computational study on photophysical properties of substituted o-hydroxy acetophenone derivatives: Intramolecular proton transfer and solvent effect. Chem Phys 342:309–317. doi: 10.1016/j.chemphys.2007.10.017 CrossRefGoogle Scholar
  41. 41.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. doi: 10.1021/cr9904009 CrossRefPubMedGoogle Scholar
  42. 42.
    Hsieh C-C, Jiang C-M, Chou P-T (2010) Recent experimental advances on excited-state intramolecular proton coupled electron transfer reaction. Acc Chem Res 43:1364–1374. doi: 10.1021/ar1000499 CrossRefPubMedGoogle Scholar
  43. 43.
    Dennison SM, Guharay J, Sengupta PK (1999) Excited-state intramolecular proton transfer (ESIPT) and charge transfer (CT) fluorescence probe for model membranes. Spectrochim Acta Part A Mol Biomol Spectrosc 55:1127–1132. doi: 10.1016/S1386-1425(99)00013-X CrossRefGoogle Scholar
  44. 44.
    Li G-Y, Chu T (2011) TD-DFT study on fluoride-sensing mechanism of 2-(2′-phenylureaphenyl)benzoxazole: The way to inhibit the ESIPT process. Phys Chem Chem Phys 13:20766. doi: 10.1039/c1cp21470e CrossRefPubMedGoogle Scholar
  45. 45.
    Li G-Y, Zhao G-J, Han K-L, He G-Z (2011) A TD-DFT study on the cyanide-chemosensing mechanism of 8-formyl-7-hydroxycoumarin. J Comput Chem 32:668–674. doi: 10.1002/jcc.21651 CrossRefPubMedGoogle Scholar
  46. 46.
    Guang-Yue Li, Guang-Jiu Zhao, Yu-Hui Liu, ke-Li Han G-ZH (2010) TD-DFT Study on the Sensing Mechanism of a Fluorescent Chemosensor for Fluoride: Excited-State Proton Transfer. J Comput Chem 31:1759.Google Scholar
  47. 47.
    Hanson K, Patel N, Whited MT, et al. (2011) Substituted 1,3-bis(imino)isoindole diols: A new class of proton transfer dyes. Org Lett 13:1598–1601. doi: 10.1021/ol103106m CrossRefPubMedGoogle Scholar
  48. 48.
    Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346–354CrossRefGoogle Scholar
  49. 49.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  50. 50.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  51. 51.
    Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependentdensity- functionalresponsetheory: Characterizationand correctionofthetime-dependentlocal densityapproximation ionization threshold Mark. J Chem Phys 108:4439. doi: 10.1063/1.475855 CrossRefGoogle Scholar
  52. 52.
    Santra M, Moon H, Park MH, et al. (2012) Dramatic substituent effects on the photoluminescence of boron complexes of 2-(benzothiazol-2-yl)phenols. Chem – A Eur J 18:9886–9893. doi: 10.1002/chem.201200726 CrossRefGoogle Scholar
  53. 53.
    Li H, Niu L, Xu X, et al. (2011) A comprehensive therotical investigation of intramolecular proton transfer in the excited states for some newly-designed diphenylethylene derivatives bearing 2-(2-Hydroxy-Phenyl)-Benzotriazole part. J Fluoresc 21:1721–1728. doi: 10.1007/s10895-011-0867-6 CrossRefPubMedGoogle Scholar
  54. 54.
    Hehre WJ, Radom L, Schleyer P v, P R (1986) Initio Molecular Orbital Theory. Wiley -Interscience, New YorkGoogle Scholar
  55. 55.
    Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464. doi: 10.1016/0009-2614(96)00440-X CrossRefGoogle Scholar
  56. 56.
    Filipp Furche∗ and Dmitrij Rappoport (2005) Density functional methods for excited states: equilibrium structure and electronic spectra. Elsevier, AmsterdamGoogle Scholar
  57. 57.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  58. 58.
    Valeur B (2001) Molecular fluorescence: principles andApplications. Wiley –VCH, WeinheimCrossRefGoogle Scholar
  59. 59.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335. doi: 10.1016/0009-2614(96)00349-1 CrossRefGoogle Scholar
  60. 60.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji HCM, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Fox DJ et al. (2010) Gaussian 09 revision C01, Gaussian Inc, WallingfordGoogle Scholar
  61. 61.
    Legault CY (2009) CYLview, 1.0b; Universit_e de Sherbrooke. Accessed 19 Jan 2016

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Tinctorial Chemistry Group, Department of Dyestuff TechnologyInstitute of Chemical TechnologyMumbaiIndia
  2. 2.Computational Chemistry Group, Department of Chemistry, Faculty of ScienceUniversity of MauritiusRéduitMauritius
  3. 3.Department of Pharmaceutical Chemistry, College of PharmacyKing Saud UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Department of Chemistry, College of Science, Engineering and TechnologyUniversity of South AfricaPretoriaSouth Africa

Personalised recommendations