Journal of Fluorescence

, Volume 26, Issue 4, pp 1407–1414 | Cite as

Ligand Assisted Stabilization of Fluorescence Nanoparticles; an Insight on the Fluorescence Characteristics, Dispersion Stability and DNA Loading Efficiency of Nanoparticles

  • Amina Rhouati
  • Akhtar Hayat
  • Rupesh K. Mishra
  • Diana Bueno
  • Shakir Ahmad Shahid
  • Roberto Muñoz
  • Jean Louis Marty


This work reports on the ligand assisted stabilization of Fluospheres® carboxylate modified nanoparticles (FCMNPs), and subsequently investigation on the DNA loading capacity and fluorescence response of the modified particles. The designed fluorescence bioconjugate was characterized with enhanced fluorescence characteristics, good stability and large surface area with high DNA loading efficiency. For comparison purpose, bovine serum albumin (BSA) and polyethylene glycol (PEG) with three different length strands were used as cross linkers to modify the particles, and their DNA loading capacity and fluorescence characteristics were investigated. By comparing the performance of the particles, we found that the most improved fluorescence characteristics, enhanced DNA loading and high dispersion stability were obtained, when employing PEG of long spacer arm length. The designed fluorescence bioconjugate was observed to maintain all its characteristics under varying pH over an extended period of time. These types of bioconjugates are in great demand for fluorescence imaging and in vivo fluorescence biomedical application, especially when most of the as synthesized fluorescence particles cannot withstand to varying in vivo physiological conditions with decreases in fluorescence response and DNA loading efficiency.


Fluorescence particles Fluorescence bioconjugates Dispersion and stability DNA loading efficiency Polyethylene glycol crosslinkers 


  1. 1.
    Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanomater 2(1):3Google Scholar
  2. 2.
    Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769CrossRefPubMedGoogle Scholar
  3. 3.
    Ruedas-Rama MJ, Walters JD, Orte A, Hall EAH (2012) Fluorescent nanoparticles for intracellular sensing: A review. Anal Chim Acta 751(0):1–23. doi: 10.1016/j.aca.2012.09.025 CrossRefPubMedGoogle Scholar
  4. 4.
    Ray S, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113(43):18546–18551CrossRefGoogle Scholar
  5. 5.
    Woolley R, Roy S, Prendergast U, Panzera A, Basabe-Desmonts L, Kenny D, McDonagh C (2013) From particle to platelet: optimization of a stable, high brightness fluorescent nanoparticle based cell detection platform. Nanomedicine: Nanotechnol Biol Med 9(4):540–549. doi: 10.1016/j.nano.2012.10.001 Google Scholar
  6. 6.
    Rosi NL, Mirkin CA (2005) Nanostructures in Biodiagnostics. Chem Rev 105(4):1547–1562. doi: 10.1021/cr030067f CrossRefPubMedGoogle Scholar
  7. 7.
    Ingham B, Lim TH, Dotzler CJ, Henning A, Toney MF, Tilley RD (2011) How nanoparticles coalesce: an in situ study of Au nanoparticle aggregation and grain growth. Chem Mater 23(14):3312–3317. doi: 10.1021/cm200354d CrossRefGoogle Scholar
  8. 8.
    Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46(13):7037–7045CrossRefPubMedGoogle Scholar
  9. 9.
    Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265. doi: 10.1016/j.addr.2008.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Auyeung E, Cutler JI, Macfarlane RJ, Jones MR, Wu J, Liu G, Zhang K, Osberg KD, Mirkin CA (2012) Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. Nat Nanotechnol 7 (1):24–28. doi:
  11. 11.
    Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M (2006) Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine 1(1):51–57CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gubala V, Lynam CC, Nooney R, Hearty S, McDonnell B, Heydon K, O'Kennedy R, MacCraith BD, Williams DE (2011) Kinetics of immunoassays with particles as labels: effect of antibody coupling using dendrimers as linkers. Analyst 136(12):2533–2541CrossRefPubMedGoogle Scholar
  13. 13.
    Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672CrossRefPubMedGoogle Scholar
  14. 14.
    Mei BC, Oh E, Susumu K, Farrell D, Mountziaris TJ, Mattoussi H (2009) Effects of ligand coordination number and surface curvature on the stability of gold nanoparticles in aqueous solutions. Langmuir 25(18):10604–10611CrossRefPubMedGoogle Scholar
  15. 15.
    Uchida K, Hoshino Y, Tamura A, Yoshimoto K, Kojima S, Yamashita K, Yamanaka I, Otsuka H, Kataoka K, Nagasaki Y (2007) Creation of a mixed poly(ethylene glycol) tethered-chain surface for preventing the nonspecific adsorption of proteins and peptides. Biointerphases 2(4):126–130CrossRefPubMedGoogle Scholar
  16. 16.
    Schulz F, Vossmeyer T, Bastús NG, Weller H (2013) Effect of the spacer structure on the stability of gold nanoparticles functionalized with monodentate thiolated poly (ethylene glycol) ligands. Langmuir 29(31):9897–9908CrossRefPubMedGoogle Scholar
  17. 17.
    Warner MG, Hutchison JE (2003) Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nat Mater 2(4):272–277CrossRefPubMedGoogle Scholar
  18. 18.
    Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342CrossRefPubMedGoogle Scholar
  19. 19.
    Yang J, Lee JY, Too H-P, Chow G-M, Gan LM (2006) Single stranded DNA stabilization and assembly of Au nanoparticles of different sizes. Chem Phys 323(2–3):304–312. doi: 10.1016/j.chemphys.2005.09.044 CrossRefGoogle Scholar
  20. 20.
    Herne TM, Tarlov MJ (1997) Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc 119(38):8916–8920. doi: 10.1021/ja9719586 CrossRefGoogle Scholar
  21. 21.
    Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21(20):9303–9307CrossRefPubMedGoogle Scholar
  22. 22.
    Rubino OP, Kowalsky R, Swarbrick J (1993) Albumin microspheres as a drug delivery system: relation among turbidity ratio, degree of cross-linking, and drug release. Pharm Res 10(7):1059–1065CrossRefPubMedGoogle Scholar
  23. 23.
    Akhavan A, Kalhor H, Kassaee M, Sheikh N, Hassanlou M (2010) Radiation synthesis and characterization of protein stabilized gold nanoparticles. Chem Eng J 159(1):230–235CrossRefGoogle Scholar
  24. 24.
    Gebregeorgis A, Bhan C, Wilson O, Raghavan D (2013) Characterization of silver/bovine serum albumin (Ag/BSA) nanoparticles structure: morphological, compositional, and interaction studies. J Colloid Interface Sci 389(1):31–41CrossRefPubMedGoogle Scholar
  25. 25.
    Huang H, Yang X (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339(15):2627–2631CrossRefPubMedGoogle Scholar
  26. 26.
    Si R, Zhang Y-W, You L-P, Yan C-H (2006) Self-organized monolayer of nanosized ceria colloids stabilized by poly (vinylpyrrolidone). J Phys Chem B 110(12):5994–6000CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang X, Fu C, Feng L, Ji Y, Tao L, Huang Q, Li S, Wei Y (2012) PEGylation and polyPEGylation of nanodiamond. Polymer 53(15):3178–3184CrossRefGoogle Scholar
  28. 28.
    Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30(10):1928–1936CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yang J, Lee JY, Too H-P, Chow G-M, Gan LM (2006) Single stranded DNA stabilization and assembly of Au nanoparticles of different sizes. Chem Phys 323(2):304–312CrossRefGoogle Scholar
  31. 31.
    Rhouati A, Yang C, Hayat A, Marty J-L (2013) Aptamers: a promising tool for ochratoxin a detection in food analysis. Toxins 5(11):1988–2008CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Amina Rhouati
    • 1
    • 2
  • Akhtar Hayat
    • 1
    • 3
  • Rupesh K. Mishra
    • 1
  • Diana Bueno
    • 1
    • 4
  • Shakir Ahmad Shahid
    • 5
  • Roberto Muñoz
    • 4
  • Jean Louis Marty
    • 1
  1. 1.BAE: Biocapteurs-Analyses-EnvironnementUniversite de Perpignan Via DomitiaPerpignanFrance
  2. 2.Ecole Nationale Supérieure de BiotechnologieConstantineAlgérie
  3. 3.Interdisciplinary Research centre in Biomedical Materials (IRCBM)COMSATS Institute of Information TechnologyLahorePakistan
  4. 4.Bioelectronics Section, Department of Electrical EngineeringCINVESTAV-IPNMexicoMexico
  5. 5.Department of ChemistryUniversity of SargodhaSargodhaPakistan

Personalised recommendations