Journal of Fluorescence

, Volume 26, Issue 4, pp 1373–1380 | Cite as

Spectroscopic Studies on the Interaction of Metallic Ions with an Imidazolyl-Phenolic System

  • Ronaldo Barros OrfãoJr
  • Jessica Alves
  • Fernando Heering Bartoloni


A fluorescent imidazolyl-phenolic compound was applied on the detection of metallic species (Cu2+, Al3+, Cr3+ and Fe3+) in a CH3CN/H2O (95/5, v/v) media. The presence and concentration of these cations altered significantly the emission profile of the probe, mainly lowering the signal intensity at 466 nm, while a new emission band around 395 nm appeared (for the trivalent ions). These results were rationalized as a combination of collisional quenching (KSV in the 103–104 L mol−1 range) and formation of a coordinated compound. The later disrupts the Excited State Intramolecular Proton Transfer that regulates the keto-enol tautomerism originally present on the free probe. Since the quenching efficiency and the obtained emission profiles are drastically different for Cu2+ and Fe3+ ions, this allows their differential recognition.


Chemosensor ESIPT Fluorescent probe Copper(II) Iron(III) 



The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, RBOJr 2014/05813-2, JA 2013/17332-6, FHB 2012/13807-7) for financial support.

Supplementary material

10895_2016_1828_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1.32 mb)


  1. 1.
    Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256:170–192CrossRefGoogle Scholar
  2. 2.
    de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566CrossRefPubMedGoogle Scholar
  3. 3.
    Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549CrossRefPubMedGoogle Scholar
  4. 4.
    Jiang PJ, Guo ZJ (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248:205–229CrossRefGoogle Scholar
  5. 5.
    Aragoni MC, Arca M, Bencini A, Blake AJ, Caltagirone C, Danesi A, Devillanova FA, Garau A, Gelbrich T, Isaia F, Lippolis V, Hursthouse MB, Valtancoli B, Wilson C (2007) New fluorescent chemosensors for heavy metal ions based on functionalized pendant arm derivatives of 7-anthracenylmethyl-1,4,10-trioxa-7,13-diazacyclopentadecane. Inorg Chem 46:8088–8097CrossRefPubMedGoogle Scholar
  6. 6.
    Hao EH, Meng T, Zhang M, Pang WD, Zhou YY, Jiao LJ (2011) Solvent dependent fluorescent properties of a 1,2,3-Triazole linked 8-Hydroxyquinoline chemosensor: tunable detection from zinc(II) to iron(III) in the CH3CN/H2O system. J Phys Chem A 115:8234–8241CrossRefPubMedGoogle Scholar
  7. 7.
    Gao W, Yang Y, Huo F, Yin C, Xu M, Zhang Y, Chao J, Jin S, Zhang S (2014) An ICT colorimetric chemosensor and a non-ICT fluorescent chemosensor for the detection copper ion. Sensors Actuators B Chem 193:294–300CrossRefGoogle Scholar
  8. 8.
    Qu L, Yin C, Huo F, Zhang Y, Li Y (2013) A commercially available fluorescence chemosensor for copper ion and its application in bioimaging. Sensors Actuators B Chem 183:636–640CrossRefGoogle Scholar
  9. 9.
    Xu M, Yin C, Huo F, Zhang Y, Chao J (2014) A highly sensitive "ON-OFF-ON" fluorescent probe with three binding sites to sense copper ion and its application for cell imaging. Sensors Actuators B Chem 204:18–23CrossRefGoogle Scholar
  10. 10.
    Zhao B, Xu Y, Fang Y, Wang LY, Deng QG (2015) Synthesis and fluorescence properties of phenanthro[9,10-d] imidazole derivative for Ag+ in aqueous media. Tetrahedron Lett 56:2460–2465CrossRefGoogle Scholar
  11. 11.
    Chopra S, Singh J, Kaur H, Singh H, Singh N, Kaur N (2015) Selective chemosensing of spermidine based on fluorescent organic nanoparticles in aqueous media via a Fe3+ displacement assay. New J Chem 39:3507–3512CrossRefGoogle Scholar
  12. 12.
    Alves J, Boaro A, da Silva JS, Ferreira TL, Keslarek VB, Cabral CA, Orfao RB Jr, Ciscato LFML, Bartoloni FH (2015) Lophine derivatives as activators in peroxyoxalate chemiluminescence. Photochem Photobiol Sci 14:320–328Google Scholar
  13. 13.
    Nakashima K (2003) Lophine derivatives as versatile analytical tools. Biomed Chromatogr 17:83–95CrossRefPubMedGoogle Scholar
  14. 14.
    Benisvy L, Blake AJ, Collison D, Davies ES, Garner CD, McInnes EJL, McMaster J, Whittaker G, Wilson C (2001) A phenoxyl radical complex of copper(II). Chem Commun:1824–1825Google Scholar
  15. 15.
    Benisvy L, Blake AJ, Collison D, Davies ES, Garner CD, McInnes EJL, McMaster J, Whittaker G, Wilson C (2003) A phenol-imidazole pro-ligand that can exist as a phenoxyl radical, alone and when complexed to copper(II) and zinc(II). Dalton Trans:1975–1985Google Scholar
  16. 16.
    Benisvy L, Bill E, Blake AJ, Collison D, Davies ES, Garner CD, Guindy CI, McInnes EJL, McArdle G, McMaster J, Wilson C, Wolowska J (2004) Phenolate and phenoxyl radical complexes of Co(II) and Co(III). Dalton Trans:3647–3653Google Scholar
  17. 17.
    Eseola AO, Li W, Gao R, Zhang M, Hao X, Liang T, Obi-Egbedi NO, Sun W-H (2009) Syntheses, structures, and fluorescent properties of 2-(1H-imidazol-2-yl)phenols and their neutral Zn(II) complexes. Inorg Chem 48:9133–9146CrossRefPubMedGoogle Scholar
  18. 18.
    Henary MM, Fahrni CJ (2002) Excited state intramolecular proton transfer and metal ion complexation of 2-(2'-hydroxyphenyl)benzazoles in aqueous solution. J Phys Chem A 106:5210–5220CrossRefGoogle Scholar
  19. 19.
    Zhao JZ, Ji SM, Chen YH, Guo HM, Yang P (2012) Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. PCCP 14:8803–8817CrossRefPubMedGoogle Scholar
  20. 20.
    Wu JS, Liu WM, Ge JC, Zhang HY, Wang PF (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495CrossRefPubMedGoogle Scholar
  21. 21.
    Kwon JE, Park SY (2011) Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv Mater 23:3615–3642CrossRefPubMedGoogle Scholar
  22. 22.
    Park S, Kwon JE, Kim SH, Seo J, Chung K, Park S-Y, Jang D-J, Medina BM, Gierschner J, Park SY (2009) A white-light-emitting molecule: frustrated energy transfer between constituent emitting centers. J Am Chem Soc 131:14043–14049CrossRefPubMedGoogle Scholar
  23. 23.
    Rios Vazquez S, Rios Rodriguez MC, Mosquera M, Rodriguez-Prieto F (2007) Excited-state intramolecular proton transfer in 2-(3'-hydroxy-2'-pyridyl)benzoxazole. Evid coupled proton charge tranexcited state some o-hydroxyarylbenzazoles J Phys Chem A 111:1814–1826Google Scholar
  24. 24.
    Gaenko AV, Devarajan A, Tselinskii IV, Ryde U (2006) Structural and photoluminescence properties of excited state intramolecular proton transfer capable compounds - potential emissive and electron transport materials. J Phys Chem A 110:7935–7942CrossRefPubMedGoogle Scholar
  25. 25.
    Kim SH, Park S, Kwon JE, Park SY (2011) Organic light-emitting diodes with a white-emitting molecule: emission mechanism and device characteristics. Adv Funct Mater 21:644–651CrossRefGoogle Scholar
  26. 26.
    Tang K-C, Chang M-J, Lin T-Y, Pan H-A, Fang T-C, Chen K-Y, Hung W-Y, Hsu Y-H, Chou P-T (2011) Fine tuning the energetics of excited-state intramolecular proton transfer (ESIPT): white light generation in a single ESIPT system. J Am Chem Soc 133:17738–17745CrossRefPubMedGoogle Scholar
  27. 27.
    Luxami V, Kumar S (2008) Molecular half-subtractor based on 3,3'-bis(1H-benzimidazolyl-2-yl)[1,1]'-binaphthalenyl-2,2'-diol. New J Chem 32:2074–2079CrossRefGoogle Scholar
  28. 28.
    Luxami V, Kumar S (2012) ESIPT based dual fluorescent sensor and concentration dependent reconfigurable boolean operators. RSC Adv 2:8734–8740CrossRefGoogle Scholar
  29. 29.
    Taki M, Wolford JL, O'Halloran TV (2004) Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy. J Am Chem Soc 126:712–713CrossRefPubMedGoogle Scholar
  30. 30.
    Rodembusch FS, Brand FR, Correa DS, Pocos JC, Martinelli M, Stefani V (2005) Transition metal complexes from 2-(2'-hydroxyphenyl)benzoxazole: a spectroscopic and thermogravimetric stability study. Mater Chem Phys 92:389–393CrossRefGoogle Scholar
  31. 31.
    Kim YH, Roh S-G, Jung S-D, Chung M-A, Kim HK, Cho DW (2010) Excited-state intramolecular proton transfer on 2-(2'-hydroxy-4'-R-phenyl)benzothiazole nanoparticles and fluorescence wavelength depending on substituent and temperature. Photochem Photobiol Sci 9:722–729CrossRefPubMedGoogle Scholar
  32. 32.
    Sharma S, Hundal MS, Singh N, Hundal G (2013) Nanomolar fluorogenic recognition of Cu(II) in aqueous medium-a highly selective "on-off" probe based on mesitylene derivative. Sensors Actuators B Chem 188:590–596CrossRefGoogle Scholar
  33. 33.
    Iniya M, Jeyanthi D, Krishnaveni K, Mahesh A, Chellappa D (2014) Triazole based ratiometric fluorescent probe for Zn2+ and its application in bioimaging. Spectroc Acta Pt A-Molec Biomolec Spectr 120:40–46CrossRefGoogle Scholar
  34. 34.
    Wang J, Pang Y (2014) A simple sensitive ESIPT on-off fluorescent sensor for selective detection of Al3+ in water. RSC Adv 4:5845–5848CrossRefGoogle Scholar
  35. 35.
    Deshmukh MS, Sekar N (2015) Photophysical properties of ESIPT inspired fluorescent 2-(2-hydroxyphenyl)-6-methylimidazo[4,5-f]isoindole-5,7(1H,6H)-dione and its derivative: experimental and DFT based approach. Spectroc Acta Pt A-Molec Biomolec Spectr 135:457–465CrossRefGoogle Scholar
  36. 36.
    Gu ZY, Lei W, Shi WY, Hao QL, Si WM, Xia XF, Wang FX (2014) Studies on the interaction between 9-fluorenylmethyl chloroformate and Fe3+ and Cu2+ ions: spectroscopic and theoretical calculation approach. Spectroc Acta Pt A-Molec Biomolec Spectr 132:361–368CrossRefGoogle Scholar
  37. 37.
    Shellaiah M, Wu Y-H, Singh A, Raju MVR, Lin H-C (2013) Novel pyrene- and anthracene-based Schiff base derivatives as Cu2+ and Fe3+ fluorescence turn-on sensors and for aggregation induced emissions. J Mater Chem A 1:1310–1318CrossRefGoogle Scholar
  38. 38.
    Lakowicz JR (2009) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkGoogle Scholar
  39. 39.
    Wang Y-Q, Tang B-P, Zhang H-M, Zhou Q-H, Zhang G-C (2009) Studies on the interaction between imidacloprid and human serum albumin: spectroscopic approach. J Photochem Photobiol B Biol 94:183–190CrossRefGoogle Scholar
  40. 40.
    Jiang M, Xie MX, Zheng D, Liu Y, Li XY, Chen X (2004) Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J Mol Struct 692:71–80CrossRefGoogle Scholar
  41. 41.
    The plot of log(I0–I)/I vs. log[Fe3+] did not show a sufficiently linear correlation, to correctly determine these parameter valuesGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ronaldo Barros OrfãoJr
    • 1
  • Jessica Alves
    • 1
  • Fernando Heering Bartoloni
    • 1
  1. 1.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréBrazil

Personalised recommendations