Advertisement

Journal of Fluorescence

, Volume 26, Issue 4, pp 1367–1372 | Cite as

A Turn on ESIPT Probe for Rapid and Ratiometric Fluorogenic Detection of Hg2+ and its Application in Live-Cell Imaging

  • Di Zhang
  • Jihong LiuEmail author
  • Haiyan Yin
  • Hongqi Wang
  • Shufang Li
  • Min Wang
  • Man Li
  • Ling Zhou
  • Junfeng ZhangEmail author
ORIGINAL ARTICLE

Abstract

A probe based on 2-(2′-hydroxyphenyl) benzothiazole (HBT) and thiophosphate has been synthesized and used for the ratiometric detection of Hg2+. The probe was designed in such a way that the excited state intramolecular proton transfer (ESIPT) of the HBT moiety get blocked. The probe exhibited a strong fluorescence enhancement upon addition of Hg2+ while showing almost no response to other cations in CH3CN/HEPES buffer solution. The probe exhibited fast selectivity towards Hg2+ and could be completed in 1 min. Fluorescence imaging experiments of Hg2+ in living TE-1 cells demonstrated its value of practical applications in biological systems.

Keywords

Hg2+ ESIPT Thiophosphate Fluorescence Deprotection 

Notes

Acknowledgments

This work was supported by the National Science Foundation of China (Nos. 21305031), Scientific and Technological Project of Henan Province of China (152102110135 and 162102310352), Science-Technology Foundation for Outstanding Young Scientists of Henan Academy of Agricultural Sciences (Grant no. 2016YQ22).

Supplementary material

10895_2016_1826_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1.16 mb)

Reference

  1. 1.
    Quang DT, Kim JS (2010) Fluoro- and chromogenic- chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem Rev 110:6280–6301CrossRefGoogle Scholar
  2. 2.
    Du JJ, Hu MM, Fan JL, Peng XJ (2012) Fluorescent chemo-dosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media. Chem Soc Rev 41:4511–4535CrossRefPubMedGoogle Scholar
  3. 3.
    Formica M, Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution. Coord Chem Rev 256:170–192CrossRefGoogle Scholar
  4. 4.
    Yang Y, Zhao Q, Feng W, Li F (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113:192–270CrossRefPubMedGoogle Scholar
  5. 5.
    Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301:1203CrossRefPubMedGoogle Scholar
  6. 6.
    Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury-current exposures and clinical manifestations. N Engl J Med 49:1731–1737CrossRefGoogle Scholar
  7. 7.
    Liu W, Xu L, Zhang H, You J, Zhang X, Sheng R, Li H, Wu S, Wang P (2009) Dithiolane linked thiorhodamine dimer for Hg2+ recognition in living cells. Org Biomol Chem 7:660–664CrossRefPubMedGoogle Scholar
  8. 8.
    Huang HJ, Xu Y, Qian X (2009) A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptor. J Org Chem 74:2167–2170CrossRefPubMedGoogle Scholar
  9. 9.
    Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351CrossRefPubMedGoogle Scholar
  10. 10.
    D. Zhang, M. Li, M. Wang, J. H. Wang, X. Yang, Y. Ye, Y. F. Zhao. A rhodamine- phosphonate off-on fluorescent sensor for Hg2+ in natural water and its application in live cell imaging. Sens Actuator B 2013; 177: 997–1002. [11] R. Han, X. Yang, D. Zhang, M. Fan, Y. Ye, Y. F. Zhao. A bis(rhodamine)-based highly sensitive and selective fluorescent chemosensor for Hg(II) in aqueous media. New J. Chem., 2012; 36: 1961–1965.Google Scholar
  11. 11.
    Huang JH, Xu YF, Qian XH (2009) A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptor. J Org Chem 74:2167–2170CrossRefPubMedGoogle Scholar
  12. 12.
    Shi W, Ma HM (2008) Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media. Chem Commun 16:1856–1858CrossRefGoogle Scholar
  13. 13.
    Yan FY, Cao DL, Wang M, Yang N, Yu QH, Dai LF (2012) A new rhodamine-based “off-on” fluorescent chemosensor for Hg (II) ion and its application in imaging Hg (II) in living cells. J Fluoresc 22:1249–1256CrossRefPubMedGoogle Scholar
  14. 14.
    Wang HH, Xue L, Yu CL, Qian YY, Jiang H (2011) Rhodamine-based fluorescent sensor for mercury in buffer solution and living cells. Dyes Pigments 91:350–355CrossRefGoogle Scholar
  15. 15.
    Im HG, Kim HY, Chang SK (2014) Dual signaling of Hg2+ ions by selective cleavage of thiophosphinated rhodol. Sensors Actuators B 191:854–859CrossRefGoogle Scholar
  16. 16.
    Fan JL, Sun W, Hu MM, Cao JF, Cheng GH, Dong HJ, Song KD, Liu YC, Sun SG, Peng XJ (2012) An ICT-based ratiometric probe for hydrazine and its application in live cells. Chem Commun 48:8117–8119CrossRefGoogle Scholar
  17. 17.
    Lee MH, Kim HJ, Yoon S, Park N, Kim JS (2008) Metal ion induced FRET off-on in tren/dansyl-appended rhodamine. Org Lett 10:213–216CrossRefPubMedGoogle Scholar
  18. 18.
    Lin Y, Lin W, Xie Y, Chen B, Song J (2011) Development of a ratiometric fluorescent sensor for ratiometric imaging of endogenously produced nitric oxide in macrophage cells. Chem Commun 47:9372–9374CrossRefGoogle Scholar
  19. 19.
    Zhang J, Guo W (2014) A new fluorescent probe for gasotransmitter H2S: high sensitivity, excellent selectivity, and a significant fluorescence off–on response. Chem Commun 50:4214–4217CrossRefGoogle Scholar
  20. 20.
    Xu Z, Xu L, Zhou J, Xu Y, Zhu W, Qian X (2012) A highly selective fluorescent probe for fast detection of hydrogen sulfide in aqueous solution and living cells. Chem Commun 48:10871–10873CrossRefGoogle Scholar
  21. 21.
    Goswami S, Manna A, Mondala M, Sarkar D (2014) Cascade reaction-based rapid and ratiometric detection of H2S/S2 in the presence of bio-thiols with live cell imaging: demasking of ESIPT approach. RSC Adv 4:62639–62643CrossRefGoogle Scholar
  22. 22.
    Goswami S, Das S, Aich K, Pakhira B, Panja S, Mukherjee SK, Sarkar S (2013) A Chemodosimeter for the ratiometric detection of hydrazine based on return of ESIPT and its application in live-cell imaging. Org Lett 15:5412–5415CrossRefPubMedGoogle Scholar
  23. 23.
    Tang Y, Lee D, Wang J, Li G, Yu J, Lin W, Yoon J (2015) Development of fluorescent probes based on protection-deprotection of the key functional groups for biological imaging. Chem Soc Rev 44:5003–5015CrossRefPubMedGoogle Scholar
  24. 24.
    Wanichacheva N, Setthakarn K, Prapawattanapol N, Hanmeng O, Lee VS, Grudpan K (2012) Rhodamine B-based “turn-on” fluorescent and colorimetric chemosensors for highly sensitive and selective detection of mercury (II) ions. J Lumin 132:35–40CrossRefGoogle Scholar
  25. 25.
    Lee MH, Wu JS, Lee JW, Jung JH, Kim JS (2007) Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Org Lett 9:2501–2504CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou J, Shi R, Liu J, Wang R, Xu Y, Qian X (2015) An ESIPT-based fluorescent probe for sensitive detection of hydrazine in aqueous solution. Org Biomol Chem 13:5344–5348CrossRefPubMedGoogle Scholar
  27. 27.
    Wang H-H, Xue L, Yu C-L, Qian Y-Y, Jiang H (2011) Rhodamine-based fluorescent sensor for mercury in buffer solution and living cells. Dyes Pigments 91:350–355CrossRefGoogle Scholar
  28. 28.
    Zhou Y, Zhang J, Zhang L, Zhang Q, Ma T, Niu J (2013) A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media. Dyes Pigments 97:148–154CrossRefGoogle Scholar
  29. 29.
    Liu D, Pang T, Ma K, Jiang W, Bao X (2014) A new highly sensitive and selective fluorescence chemosensor for Cr3+ based on rhodamine B and a 4,13-diaza-18-crown 6-ether conjugate. RSC Adv 4:2563–2567CrossRefGoogle Scholar
  30. 30.
    Liu B, Wang H, Wang T, Bao Y, Du F, Tian J, Li Q, Bai R (2012) A new ratiometric ESIPT sensor for detection of palladium species in aqueous solution. Chem Commun 48:2867–2869CrossRefGoogle Scholar
  31. 31.
    Chen S, Hou P, Wang J, Song X (2012) A highly sulfite-selective ratiometric fluorescent probe based on ESIPT. RSC Adv 2:10869–10873CrossRefGoogle Scholar
  32. 32.
    Goswami S, Maity S, Maity AC, Das AK, Pakhira B, Khanra K, Bhattacharyya N, Sarkar S (2015) ESIPT based Hg2+ and fluoride chemosensor for sensitive and selective ‘turn on’ red signal and cell imaging. RSC Adv 5:5735–5740CrossRefGoogle Scholar
  33. 33.
    Zhao Y, Sun Y, Lv X, Liu Y, Chen M, Wei G (2010) Rhodamine-based chemosensor for Hg2+ in aqueous solution with a broad pH range and its application in live cell imaging. Org Biomol Chem 8:4143–4147CrossRefPubMedGoogle Scholar
  34. 34.
    Wang C, Zhang D, Huang X, Ding P, Wang Z, Zhao Y, Ye Y (2014) A ratiometric fluorescent chemosensor for Hg2+ based on FRET and its application in living cells. Sensors Actuators B Chem 198:33–40CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Di Zhang
    • 1
    • 2
    • 3
  • Jihong Liu
    • 1
    • 2
    • 3
    Email author
  • Haiyan Yin
    • 1
    • 2
    • 3
  • Hongqi Wang
    • 1
    • 2
    • 3
  • Shufang Li
    • 1
    • 2
    • 3
  • Min Wang
    • 1
    • 2
    • 3
  • Man Li
    • 1
    • 2
    • 3
  • Ling Zhou
    • 1
    • 2
    • 3
  • Junfeng Zhang
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Quality Standards and Testing Technology for Agro-ProductsHenan Academy of Agricultural SciencesZhengzhouChina
  2. 2.Henan Cereal Quality and Safety Testing Key LaboratoryZhengzhouChina
  3. 3.Laboratory of Quality & Safety Risk Assessment for Agro-Products (Zhengzhou)Ministry of AgricultureZhengzhouChina

Personalised recommendations