Advertisement

Journal of Fluorescence

, Volume 26, Issue 4, pp 1271–1277 | Cite as

Two-Photon Fluorescence Tracking of Colloidal Clusters

  • Debjit Roy
  • Dipankar Mondal
  • Debabrata GoswamiEmail author
Article
  • 268 Downloads

Abstract

In situ dynamics of colloidal cluster formation from nanoparticles is yet to be addressed. Using two-photon fluorescence (TPF) that has been amply used for single particle tracking, we demonstrate in situ measurement of effective three-dimensional optical trap stiffness of nanoparticles and their aggregates without using any position sensitive detector. Optical trap stiffness is an essential measure of the strength of an optical trap. TPF is a zero-background detection scheme and has excellent signal-to-noise-ratio, which can be easily extended to study the formation of colloidal cluster of nanospheres in the optical trapping regime. TPF tracking can successfully distinguish colloidal cluster from its monomer.

Keywords

Optical tweezers Fluorescence Trapping 

Notes

Acknowledgments

DG thanks the support from the Wellcome Trust Senior Research Fellowship (UK) and Swarnajayanti Fellowship from DST, India for funding. DR and DM thank CSIR and UGC, India respectively for graduate fellowship. We thank Mrs. S. Goswami for language check.

References

  1. 1.
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290CrossRefPubMedGoogle Scholar
  2. 2.
    Ashkin A (2000) History of optical trapping and manipulation of small-neutral particle, atom, and molecules. IEEE J Sel Top Quantum Electron 6:841–856CrossRefGoogle Scholar
  3. 3.
    Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lukic B, Jeney S, Sviben Z, Kulik AJ, Florin E-L, Forro L (2007) Motion of a colloidal particle in an optical trap. Phys Rev E 76:011112CrossRefGoogle Scholar
  5. 5.
    Valentine MT, Dewalt LE, Ou-Yang HD (1996) Forces on a colloidal particle in a polymer solution: a study using optical tweezers. J Phys Condens Matter 8:9477CrossRefGoogle Scholar
  6. 6.
    Han Y, Grier DG (2005) Configurational temperatures and interactions in charge-stabilized colloid. J Chem Phys 122:064907CrossRefPubMedGoogle Scholar
  7. 7.
    Agarwal R, Ladavac K, Roichman Y, Yu G, Lieber C, Grier D (2005) Manipulation and assembly of nanowires with holographic optical traps. Opt Express 13:8906–8912CrossRefPubMedGoogle Scholar
  8. 8.
    Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA, Fredberg JJ, Trepat X (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10:469–475CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yuyama K, Sugiyama T, Masuhara H (2013) Laser trapping and crystallization dynamics of l-phenylalanine at solution surface. J Phys Chem Lett 4:2436–2440CrossRefPubMedGoogle Scholar
  10. 10.
    Rogers W, Crocker J (2014) A tunable line optical tweezers instrument with nanometer spatial resolution. Rev Sci Instrum 85:043704CrossRefPubMedGoogle Scholar
  11. 11.
    Berthelot J, Acimovic SS, Juan ML, Kreuzer MP, Renger J, Quidant R (2014) Nat Nanotechnol 9:295–299CrossRefPubMedGoogle Scholar
  12. 12.
    Svoboda K, Block SM (1994) Annu Rev Biophys Biomol Struct 23:247–285CrossRefPubMedGoogle Scholar
  13. 13.
    Rohrbach A, Stelzer EHK (2002) Three-dimensional position detection of optical trapped dielectric particles. J Appl Phys 91:5474–5488CrossRefGoogle Scholar
  14. 14.
    Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23:7–9CrossRefPubMedGoogle Scholar
  15. 15.
    Peterman EJG, van Dijk MA, Kapitein LC, Schmidt CF (2003) Extending the bandwidth of optical-tweezers interferometry. Rev Sci Instrum 74(7):3246–3249CrossRefGoogle Scholar
  16. 16.
    Ghislain LP, Switz NA, Webb WW (1994) Measurement of small forces using an optical trap. Rev Sci Instrum 65:2762–2768CrossRefGoogle Scholar
  17. 17.
    Otto O, Gornall JL, Stober G, Czerwinski F, Seidel R, Keyser UF (2011) High-speed video-based tracking of optically trapped colloids. J Opt 13:044011CrossRefGoogle Scholar
  18. 18.
    König K, Liang H, Berns MW, Tromberg BJ (1996) Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption. Opt Lett 21:1090–1092CrossRefPubMedGoogle Scholar
  19. 19.
    Agate B, Brown C, Sibbett W, Dholakia K (2004) Femtosecond optical tweezers for in-situ control of two-photon fluorescence. Opt Express 12:3011–3017CrossRefPubMedGoogle Scholar
  20. 20.
    De AK, Roy D, Dutta A, Goswami D (2009) Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination. Appl Opt 48:G33–G37CrossRefPubMedGoogle Scholar
  21. 21.
    Chan J, Winhold H, Lane S, Huser T (2005) Optical trapping and coherent anti-stokes Raman scattering (CARS) spectroscopy of submicron-size particles. IEEE J Sel Top Quantum Electron 11:858–863CrossRefGoogle Scholar
  22. 22.
    De AK, Roy D, Goswami D (2011) Two-photon fluorescence diagnostics of femtosecond laser tweezers. Curr Sci 101:935–945Google Scholar
  23. 23.
    Xing Q, Mao F, Chai L, Wang Q (2004) Numerical modeling and theoretical analysis of femtosecond laser tweezers. Opt Laser Technol 36:635–639CrossRefGoogle Scholar
  24. 24.
    Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612CrossRefGoogle Scholar
  25. 25.
    Xu S, Sun Z (2007) Computer simulation on the collision-sticking dynamics of two colloidal particles in an optical trap. J Chem Phys 126:144903CrossRefPubMedGoogle Scholar
  26. 26.
    Weiss JA, Larsen AE, Grier DG (1998) Interactions, dynamics, and elasticity in charge-stabilized colloidal crystals. J Chem Phys 109:8659–8666CrossRefGoogle Scholar
  27. 27.
    Ruthardt N, Lamb DC, Bräuchle C (2011) Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol Ther 19:1199–1211CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Levi V, Ruan Q, Gratton E (2005) 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophys J 88:2919–2928CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ragan T, Huang H, So P, Gratton E (2006) 3D particle tracking on a two-photon microscope. J Fluoresc 16:325–336CrossRefPubMedGoogle Scholar
  30. 30.
    Berland KM, So PTC, Gratton E (1995) Biophys J 68:694–701CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Roy D, Mondal D, Goswami D (2015) Elucidating microscopic structure and dynamics in optically tweezed environments. Chem Phys Lett 621:203–208CrossRefGoogle Scholar
  32. 32.
    Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61(2):569–582CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Malagnino N, Pesce G, Sasso A, Arimondo E (2002) Measurements of trapping efficiency and stiffness in optical tweezers. Opt Commun 214:15–24CrossRefGoogle Scholar
  34. 34.
    Jannasch A, Demirörs AF, van Oostrum PDJ, van Blaaderen A, Schäffer E (2012) Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nat Photonics 6:469–473CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Debjit Roy
    • 1
  • Dipankar Mondal
    • 1
  • Debabrata Goswami
    • 1
    Email author
  1. 1.Department of ChemistryIndian Institute of Technology KanpurUttar PradeshIndia

Personalised recommendations