Journal of Fluorescence

, Volume 26, Issue 2, pp 719–724 | Cite as

Investigation of Boron-doping Effect on Photoluminescence Properties of CdNb2O6: Eu3+ Phosphors

  • Ali Sadi Başak
  • Mete Kaan Ekmekçi
  • Murat Erdem
  • Mustafa Ilhan
  • Ayhan Mergen


Pure, Eu3+ − doped and Eu3+,B3+ co-doped CdNb2O6 powders have been prepared by a molten salt synthesis method using Li2SO4/Na2SO4 salt mixture as a flux at a relatively low temperatures as compared to solid state reaction. X-ray diffraction patterns of pure CdNb2O6 samples indicated orthorhombic single phase. Photoluminescence investigations of CdNb2O6 samples showed a strong blue emission band centered at 460 nm. For Eu-doped CdNb2O6 samples, the luminescence of Eu3+ was observed with the host red emission varying with the Eu-doping concentrations. This PL characteristic of the doped samples may be attributed to the energy transfer between Eu3+ and niobate groups (NbO6). Boron incorporation has remarkably increased the luminescence of Eu3+-doped CdNb2O6.


Molten salt process Luminescence Columbite cadmium niobate Boron effect 



The authors would like to thanks to Marmara University Research Fund (BAPKO) under Project No. FEN-C-DRP-031210-0296 for supporting this research.


  1. 1.
    Blasse G, de Haart LGJ (1986) Mater Chem Phys 14:481–484CrossRefGoogle Scholar
  2. 2.
    Hreniak D, Speghini A, Bettinelli M, Strek W (2006) J Lumin 219:119–123Google Scholar
  3. 3.
    Boutinaud P, Sarakha L, Mahiou R (2008) J Phys-Condens Mat 21:025901–025907CrossRefGoogle Scholar
  4. 4.
    Ballman AA, Porto SPS, Yariv A (1963) J Appl Phys 34:3155–3156CrossRefGoogle Scholar
  5. 5.
    Wachtel A (1964) J Electrochem Soc 111:534–538CrossRefGoogle Scholar
  6. 6.
    Ronconi CM, Alves OL (2003) Thin Solid Films 441:121–129CrossRefGoogle Scholar
  7. 7.
    Ekmekçi MK et al. (2014) J Alloy Compd 591:230–233CrossRefGoogle Scholar
  8. 8.
    Boulmaaz S, Papiernik R, Hubert-Pfalzgra LG (1991) Chem Mater 3:779–781CrossRefGoogle Scholar
  9. 9.
    Hsiao YJ, Chang YS, Chen GJ, Chang YH (2009) J Alloy Compd 471:259–262CrossRefGoogle Scholar
  10. 10.
    Zhao S, Li Q, Wang L (2006) ZhangY. Mater Lett 60:425–430CrossRefGoogle Scholar
  11. 11.
    Nakamura A, Nambu N, Saitoh H (2005) Science and tech. Of Adv. Mat. 6:210–214Google Scholar
  12. 12.
    Nayak A, Goswami K, Ghosh A, Debnath R (2009) Indian J of Pure and App Phy 17:775–781Google Scholar
  13. 13.
    Shannon RD (1976) Acta Crystallog A 32:751–767CrossRefGoogle Scholar
  14. 14.
    Blasse G, van Leur MGJ (1985) Mater Res Bull 20:1037–1045CrossRefGoogle Scholar
  15. 15.
    Brittaina HG, McAllister WA (1985) Spectrochim Acta A 41:1041–1046CrossRefGoogle Scholar
  16. 16.
    Hsiao YJ, Fang TH, Chi SS (2009) Open Serv Sci J 1:30–33CrossRefGoogle Scholar
  17. 17.
    Blasse G (1980) Structure and bonding. Springer Verlag, HeidelbergGoogle Scholar
  18. 18.
    Zhou Y, Lü M, Z Q, A Z, Q M, H Z, G Z, Z Y (2007) J Phys Chem C 111:10190–10193CrossRefGoogle Scholar
  19. 19.
    Fragoso WD, De Mello DC, Longo RL (2003) J Lumin 105:97–103CrossRefGoogle Scholar
  20. 20.
    Srivastava AM, Ackerman JF, Beers WW (1997) J Solid State Chem 134:187–191CrossRefGoogle Scholar
  21. 21.
    Zhou L, Choy WCH, Shi J, Gong M, Liang H, Yuk TI (2005) J Solid State Chem 178:3004–3009CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ali Sadi Başak
    • 1
  • Mete Kaan Ekmekçi
    • 1
  • Murat Erdem
    • 2
  • Mustafa Ilhan
    • 3
  • Ayhan Mergen
    • 3
  1. 1.Department of ChemistryMarmara UniversityIstanbulTurkey
  2. 2.Department of PhysicsMarmara UniversityIstanbulTurkey
  3. 3.Deparment of Material and Metalurgy EngMarmara UniversityIstanbulTurkey

Personalised recommendations