Advertisement

Journal of Fluorescence

, Volume 26, Issue 1, pp 37–42 | Cite as

SYBR Gold Fluorescence Quenching is a Sensitive Probe of Chitosan-microRNA Interactions

  • Beatriz Santos-Carballal
  • Musti J. Swamy
  • Bruno M. Moerschbacher
  • Francisco M. Goycoolea
SHORT COMMUNICATION

Abstract

Competitive dye displacement titration has previously been used to characterize chitosan–DNA interactions using ethidium bromide. In this work, we aim to develop a fast and reliable method using SYBR Gold as a fluorescent probe to evaluate the binding affinity between ssRNA and chitosan. The interaction of chitosan with ssRNA was investigated as a function of temperature, molecular weight and degree of acetylation of chitosan, using competitive dye displacement titrations with fluorescence quenching. Affinity constants are reported, showing the high sensitivity of the interaction to the degree of acetylation of chitosan and barely dependent on the molecular weight. We propose that the mechanism of SYBR Gold fluorescence quenching is governed by both static and dynamic quenching.

Keywords

Chitosan Single-stranded RNA Dye displacement titration Fluorescence quenching 

Notes

Acknowledgments

We acknowledge financial support and a PhD fellowship to BSC from German Research Council DFG (Project GRK 1549 International Research Training Group ‘Molecular and Cellular Glyco-Sciences’); from The Danish Agency for Science, Technology and Innovation, Denmark (FENAMI project 10-093456); the research leading to these results has also received funding from the European Union’s Seventh Framework Program for research, technological development and demonstration under grant agreement n° 613931. We are indebted to Prof. Susanne Fetzner (University of Münster), for her generous access to spectrophotometer and spectrofluorometer instruments. We thank Dr. Juan Pablo Fuenzalida and Dr. Kishore Babu Bobbili for their support during the experiments.

Supplementary material

10895_2015_1697_MOESM1_ESM.pdf (729 kb)
ESM 1 (PDF 729 kb)

References

  1. 1.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. doi: 10.1016/j.progpolymsci.2006.06.001 CrossRefGoogle Scholar
  2. 2.
    Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18:117–131. doi: 10.1016/j.tifs.2006.10.022 CrossRefGoogle Scholar
  3. 3.
    Liu X, Howard KA, Dong M, et al. (2007) The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28:1280–1288. doi: 10.1016/j.biomaterials.2006.11.004 PubMedCrossRefGoogle Scholar
  4. 4.
    Lavertu M, Méthot S, Tran-Khanh N, Buschmann MD (2006) High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 27:4815–4824. doi: 10.1016/j.biomaterials.2006.04.029 PubMedCrossRefGoogle Scholar
  5. 5.
    Ragelle H, Vandermeulen G, Préat V (2013) Chitosan-based siRNA delivery systems. J Control Release 172:207–218. doi: 10.1016/j.jconrel.2013.08.005 PubMedCrossRefGoogle Scholar
  6. 6.
    Koping-Hoggard M, Tubulekas I, Guan H, et al. (2001) Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8:1108–1121. doi: 10.1038/sj.gt.3301492 PubMedCrossRefGoogle Scholar
  7. 7.
    McKiernan PJ, Cunningham O, Greene CM, Cryan S-A (2013) Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. Int J Nanomedicine 8:3907–3915. doi: 10.2147/IJN.S47551 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Santos-Carballal B, Aaldering LJ, Ritzefeld M, et al. (2015) Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells. Sci Rep 5:13567. doi: 10.1038/srep13567 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Adammek M, Greve B, Kässens N, et al. (2013) MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors. Fertil Steril 99:1346–1355e5. doi: 10.1016/j.fertnstert.2012.11.055 PubMedCrossRefGoogle Scholar
  10. 10.
    Götte M, Mohr C, Koo C-Y, et al. (2010) MiR-145-dependent targeting of Junctional Adhesion Molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 29:6569–6580. doi: 10.1038/onc.2010.386 PubMedCrossRefGoogle Scholar
  11. 11.
    Liu W, Sun S, Cao Z, et al. (2005) An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 26:2705–2711. doi: 10.1016/j.biomaterials.2004.07.038 PubMedCrossRefGoogle Scholar
  12. 12.
    Ma PL, Lavertu M, Winnik FM, Buschmann MD (2009) New insights into chitosan-DNA interactions using isothermal titration microcalorimetry. Biomacromolecules 10:1490–1499. doi: 10.1021/bm900097s PubMedCrossRefGoogle Scholar
  13. 13.
    Holzerny P, Ajdini B, Heusermann W, et al. (2012) Biophysical properties of chitosan/siRNA polyplexes: profiling the polymer/siRNA interactions and bioactivity. J Control Release 157:297–304. doi: 10.1016/j.jconrel.2011.08.023 PubMedCrossRefGoogle Scholar
  14. 14.
    Wiethoff CM, Gill ML, Koe GS, et al. (2003) A fluorescence study of the structure and accessibility of plasmid DNA condensed with cationic gene delivery vehicles. J Pharm Sci 92:1272–1285. doi: 10.1002/jps.10391 PubMedCrossRefGoogle Scholar
  15. 15.
    Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708. doi: 10.1103/PhysRevLett.29.705 CrossRefGoogle Scholar
  16. 16.
    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61. doi: 10.1002/bip.1974.360130103 PubMedCrossRefGoogle Scholar
  17. 17.
    Mastiholi BM, Tangod VB, Raikar US (2013) Influence of metal nanoparticles on ADS560EI fluorescent laser dye. Opt Int J Light Electron Opt 124:261–264. doi: 10.1016/j.ijleo.2011.11.054 CrossRefGoogle Scholar
  18. 18.
    Tangod VB, Raikar P, Mastiholi BM, Raikar US (2014) Solvent polarity studies of highly fluorescent laser dye ADS740WS and its fluorescence quenching with silver nanoparticles. Can J Phys 92:116–123. doi: 10.1139/cjp-2013-0250 CrossRefGoogle Scholar
  19. 19.
    Tuma RS, Beaudet MP, Jin X, et al. (1999) Characterization of SYBR gold nucleic acid gel stain: a dye optimized for use with 300-nm ultraviolet transilluminators. Anal Biochem 268:278–288. doi: 10.1006/abio.1998.3067 PubMedCrossRefGoogle Scholar
  20. 20.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer US, United StatesCrossRefGoogle Scholar
  21. 21.
    Yu X, Liu R, Yi R, et al. (2011) Study of the interaction between N-confused porphyrin and bovine serum albumin by fluorescence spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 78:1329–1335. doi: 10.1016/j.saa.2011.01.024 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Beatriz Santos-Carballal
    • 1
  • Musti J. Swamy
    • 2
  • Bruno M. Moerschbacher
    • 1
  • Francisco M. Goycoolea
    • 1
  1. 1.Institute of Plant Biology and Biotechnology (IBBP)University of MünsterMünsterGermany
  2. 2.School of ChemistryUniversity of HyderabadHyderabadIndia

Personalised recommendations