Advertisement

Journal of Fluorescence

, Volume 25, Issue 6, pp 1739–1747 | Cite as

Relaxation Photoprocesses in a Crowned Styryl Dye and its Metal Complex

  • Michael V. Rusalov
  • Boris M. Uzhinov
  • Sergey I. Druzhinin
  • Vladimir L. Ivanov
  • Michael Ya. Melnikov
  • Sergey P. Gromov
  • Sergey K. Sazonov
  • Michael V. Alfimov
ORIGINAL ARTICLE

Abstract

The effects of solvent and crown-ether moiety on spectral properties of pyridinium styryl dye were studied by steady-state absorption and fluorescent spectroscopy. Analysis of viscosity and polarity effects on fluorescence quantum yield and Stokes shift permitted us to suggest that there is a two stage process of excited state relaxation. The macrocyclic moiety has a little influence on the first stage of relaxation, which manifests itself in a magnitude of Stokes shift, but suppresses considerably the second stage, which manifests itself in a magnitude of fluorescence quantum yield. The metal complex shows an additional stage of excited state relaxation, namely, photorecoordination of metal cation within the macrocyclic cavity.

Keywords

Crown ether Styryl dye Complex formation Photorecoordination Molecular rotor 

References

  1. 1.
    Volchkov VV, Uzhinov BM (2008) Structural relaxation of excited molecules of heteroaromatic compounds. High Energy Chem 42:153–169CrossRefGoogle Scholar
  2. 2.
    Grabowski ZR, Dobkowski J, Kühnle W (1984) Model compounds in study of the photophysical behaviour of carbonyl derivatives of N, N-dimethylaniline. J Mol Struct 114:93–100CrossRefGoogle Scholar
  3. 3.
    Kummrow A, Dreyer J, Chudoba C, Stenger J, Nibbering ETJ, Elsaesser T (2000) Ultrafast charge transfer studied by femtosecond IR-spectroscopy and ab initio calculations. J Chin Chem Soc 47:721–728CrossRefGoogle Scholar
  4. 4.
    Maus M, Rettig W (2002) The excited state equilibrium between two rotational conformers of a sterically restricted donor-acceptor biphenyl as characterised by global fluorescence decay analysis. J Phys Chem A 106:2104–2111CrossRefGoogle Scholar
  5. 5.
    Davis BN, Abelt CJ (2005) Synthesis and photophysical properties of models for twisted PRODAN and dimethylaminonaphthonitrile. J Phys Chem A 109:1295–1298CrossRefPubMedGoogle Scholar
  6. 6.
    Zachariasse KA, Grobys M, von der Haar T, Hebecker A, Il’ichev YV, Morawski O, Rückert I, Kühnle W (1997) Photo-induced intramolecular charge transfer and internal conversion in molecules with a small energy gap between S1 and S2. Dynamics and structure. J Photochem Photobiol A Chem 105:373–383CrossRefGoogle Scholar
  7. 7.
    Zachariasse KA, von der Haar T, Leinhos U, Kühnle W (1994) Solvent-induced pseudo-Jahn-Teller coupling in dual fluorescence evidence against the TICT hypothesis. J Inf Rec Mater 21:501–506Google Scholar
  8. 8.
    Lewis FD, Yang JS (1997) The excited state behavior of aminostilbenes. A new example of the meta effect. J Am Chem Soc 119:3834–3835CrossRefGoogle Scholar
  9. 9.
    Kharlanov VA, Knyazhansky MI (1999) The dependence of photoinduced adiabatic transformations and fluorescence in 2,4,6-triarylsubstituted pyridinium cations on environment. J Photochem Photobiol A 125:21–27CrossRefGoogle Scholar
  10. 10.
    Volchkov VV, Hue Bon Hoa G, Kossanyi JA, Gromov SP, Alfimov MV, Uzhinov BM (2005) Intramolecular structural relaxation in the excited hetarylazole cations. J Phys Org Chem 18:21–25CrossRefGoogle Scholar
  11. 11.
    Volchkov VV, Khimich MN, Makarova NI, Uzhinov BM (2005) The dynamics of intramolecular excited state relaxation of N-anthryl substituted pyridinium cations. J Fluoresc 15:111–115CrossRefPubMedGoogle Scholar
  12. 12.
    Doroshenko AO, Kirichenko AV, Mitina VG, Ponomaryev OA (1996) Spectral properties and dynamics of the excited state structural relaxation of the ortho analogues of POPOP. Effective abnormally large. Stokes shift luminophores. J Photochem Photobiol A 94:15–26CrossRefGoogle Scholar
  13. 13.
    Al-Hassan KA (1995) Time-resolved fluorescence study of 4-dimethylaminobenzonitrile in nonhydrogen-bonding polymers, using picosecond dye laser pulses as excitation source. J Polym Sci B Polym Phys 33:725–730CrossRefGoogle Scholar
  14. 14.
    Yguerabide J, Epstein HF, Stryer L (1970) Segmental flexibility in an antibody molecule. J Mol Biol 51:573–590CrossRefPubMedGoogle Scholar
  15. 15.
    Nishimoto E, Yamashita S, Szabo ÄG, Imoto T (1998) Internal motions of lysozyme studies by time-resolved fluorescence depolarization of tryptophan residues. Biochemistry 37:5599–5607CrossRefPubMedGoogle Scholar
  16. 16.
    Volchkov VV, Dem’yanov GV, Rusalov MV, Syreishchikova TI (2005) Fluorescence depolarization kinetics of neutral and charged 2-(3′-Pyridyl)oxazole. Russ J Gen Chem 75:790–794CrossRefGoogle Scholar
  17. 17.
    Volchkov VV, Uzhinova LD, Uzhinov BM (2006) The dynamics of excited state structural relaxation of 4-dimethylaminobenzonitrile (DMABN) and related compounds. Int J Photoenergy 81896:1–6CrossRefGoogle Scholar
  18. 18.
    Rechthaler K, Köhler G (1994) Excited state properties and deactivation pathways of 7-aminocoumarines. Chem Phys 189:99–116CrossRefGoogle Scholar
  19. 19.
    Uzhinov BM, Ivanov VL, Melnikov MY (2011) Molecular rotors as luminescence sensors of local viscosity and viscous flow in solutions and organized systems. Russ Chem Rev 80:1179–1190CrossRefGoogle Scholar
  20. 20.
    Loutfy RO, Law KY (1980) Electrochemistry and spectroscopy of intramolecular charge-transfer complexes. p-N, N-Dialkylaminobenzylidenemalononitriles. J Phys Chem 84:2803–2808CrossRefGoogle Scholar
  21. 21.
    Even P, Chaubet F, Letourneur D, Viriot ML, Carré MC (2003) Coumarin-like fluorescent molecular rotors for bioactive polymers probing. Biorheology 40:261–263PubMedGoogle Scholar
  22. 22.
    Stsiapura VI, Maskevich AA, Kuzmitsky VA, Uversky VN, Kuznetsova IM, Turoverov KK (2008) Thioflavin T as a molecular rotor: Fluorescent properties of thioflavin T in solvents with different viscosity. J Phys Chem B 112:15893–15902CrossRefPubMedGoogle Scholar
  23. 23.
    Singh PK, Kumbhakar M, Pal H, Nath S (2010) Viscosity effect on the ultrafast bond twisting dynamics in an amyloid fibril sensor: Thioflavin-T. J Phys Chem B 114:5920–5927CrossRefPubMedGoogle Scholar
  24. 24.
    Hawe A, Filipe V, Jiskoot W (2010) Fluorescent molecular rotors as dyes to characterize polysorbate-containing IgG formulations. Pharm Res 27:314–326PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Haidekker MA, Brady TP, Chalian SH, Akers W, Lichlyter D, Theodorakis EA (2004) Hydrophilic molecular rotor derivatives – synthesis and characterization. Bioorg Chem 32:274–289CrossRefPubMedGoogle Scholar
  26. 26.
    Gromov SP (2008) Molecular meccano for light-sensitive and light-emitting nanosized systems based on unsaturated and macrocyclic compounds. Russ Chem Bull 57:1325–1350CrossRefGoogle Scholar
  27. 27.
    Gromov SP, Ushakov EN, Vedernikov AI, Kuz’mina LG, Alfimov MV (2009) Molecular design of light-sensitive nanodimensional systems. Theor Exp Chem 45:3–11CrossRefGoogle Scholar
  28. 28.
    Ushakov EN, Alfimov MV, Gromov SP (2008) Design principles for optical molecular sensors and photocontrolled receptors based on crown ethers. Russ Chem Rev 77:39–58CrossRefGoogle Scholar
  29. 29.
    Gromov SP, Alfimov MV (1997) Supramolecular organic photochemistry of crown-ether-containing styryl dyes. Russ Chem Bull 46:611–636CrossRefGoogle Scholar
  30. 30.
    Freeman HS, Peters AT (2000) Colorants for non-textile applications. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Aspland JR (1997) Textile dyeing and coloration. American association of textile chemists and coloristsGoogle Scholar
  32. 32.
    Hunger K (2003) Industrial dyes: chemistry, properties, applications. Wiley-VCH, WeinheimGoogle Scholar
  33. 33.
    Strehmel B, Seifert H, Rettig W (1997) Photophysical properties of fluorescence probes. 2. A model of multiple fluorescence for stilbazolium dyes studied by global analysis and quantum chemical calculations. J Phys Chem B 101:2232–2243CrossRefGoogle Scholar
  34. 34.
    Van der Meer MJ, Zhang H, Rettig W, Glasbeek M (2000) Femto and picosecond fluorescence studies of solvation and nonradiative deactivation of ionic styryl dyes in liquid solution. Chem Phys Lett 320:673–680CrossRefGoogle Scholar
  35. 35.
    Thomas KJ, Thomas KG, Manojkumar TK, Das S, George MV (1994) Cation binding and photophysical properties of a monoaza-15-crown-5-ether linked cyanine dye. Proc Indian Acad Sci Chem Sci 106:1375–1383Google Scholar
  36. 36.
    Cao X, Tolbert RW, McHale JL, Edwards WD (1998) Theoretical study of solvent effects on the intramolecular charge transfer of a hemicyanine dye. J Phys Chem A 102:2739–2748CrossRefGoogle Scholar
  37. 37.
    Shiraishi Y, Inoue T, Hirai T (2010) Local viscosity analysis of triblock copolymer micelle with cyanine dyes as a fluorescent probe. Langmuir 26:17505–17512CrossRefPubMedGoogle Scholar
  38. 38.
    Wandelt B, Mielniczak A, Turkewitsch P, Darling GD, Stranix BR (2003) Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity. Biosens Bioelectron 18:465–471CrossRefPubMedGoogle Scholar
  39. 39.
    Wandelt B, Cywinski P, Darling GD, Stranix BR (2005) Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe. Biosens Bioelectron 20:1728–1736CrossRefPubMedGoogle Scholar
  40. 40.
    Reichardt C (2003) Solvents and solvent effects in organic chemistry, 3rd edn. Wiley-VCH Verlag GmbH & Co KGaA, WeinheimGoogle Scholar
  41. 41.
    Papper V, Pines D, Likhtenshtein G, Pines E (1997) Photophysical characterization of trans-4,4′-disubstituted stilbenes. J Photochem Photobiol A Chem 111:87–96CrossRefGoogle Scholar
  42. 42.
    Gromov SP, Ushakov EN, Fedorova OA, Baskin II, Buevich AV, Andryukhina EN, Alfimov MV, Johnels D, Edlund UG, Whitesell JK, Fox MA (2003) Novel photoswitchable receptors: synthesis and cation-induced self-assembly into dimeric complexes leading to stereospecific [2+2]-photocycloaddition of styryl dyes containing a 15-Crown-5 ether unit. J Org Chem 68:6115–6125CrossRefPubMedGoogle Scholar
  43. 43.
    Lednev IK, Ye TQ, Hester RE, Moore JN (1997) Photocontrol of cation complexation with a benzothiazolium styryl azacrown ether dye: spectroscopic studies on picosecond and kilosecond time scales. J Phys Chem A 101:4966–4972CrossRefGoogle Scholar
  44. 44.
    Dumon P, Jonusauskas G, Dupuy F, Pee P, Rullière C, Létard JF, Lapouyade R (1994) Picosecond dynamics of cation-macrocycle interactions in the excited state of an intrinsic fluorescence probe: the calcium complex of 4-(N-Monoaza-15-crown-5)-4′-phenylstilbene. J Phys Chem 98:10391–10396CrossRefGoogle Scholar
  45. 45.
    Yu J, Chen C, Chen Y (2011) Synthesis and fluorescent sensory properties of a 5-cyanostilbene derivative linked to monoaza-15-crown-5. J Taiwan Instit Chem Eng 42:674–681CrossRefGoogle Scholar
  46. 46.
    Lippert E (1955) Dipolmoment und Elektronenstruktur von Angeregten Molekülen. Z Naturforsch A 10:541–545CrossRefGoogle Scholar
  47. 47.
    Druzhinin SI, Rusalov MV, Uzhinov BM, Alfimov MV, Gromov SP, Fedorova OA (1995) Excited state relaxation processes of crowned styryl dyes and their metal complexes. Proc Indian Acad Sci Chem Sci 107:721–727Google Scholar
  48. 48.
    Gromov SP, Fedorova OA, Alfimov MV, Druzhinin SI, Rusalov MV, Uzhinov BM (1995) Crown-containing styryl dyes.14. Synthesis, luminescence, and complexation of the trans-isomers of chromogenic 15-crown-5-ethers. Russ Chem Bull 44:1922–1928CrossRefGoogle Scholar
  49. 49.
    Freidzon AY, Bagatur’yants AA, Gromov SP, Alfimov MV (2003) Recoordination of a metal ion in the cavity of a crown compound: a theoretical study 1. Conformers of arylazacrown ethers and their complexes with Ca2+ cation. Russ Chem Bull 52:2646–2655CrossRefGoogle Scholar
  50. 50.
    Freidzon AY, Bagatur’yants AA, Gromov SP, Alfimov MV (2005) Recoordination of a metal ion in the cavity of a crown compound: a theoretical study 2. Effect of the metal ion - solvent interaction on the conformations of calcium complexes of arylazacrown ethers. Russ Chem Bull 54:2042–2054CrossRefGoogle Scholar
  51. 51.
    Freidzon AY, Bagatur’yants AA, Gromov SP, Alfimov MV (2008) Recoordination of a metal ion in the cavity of a crown compound: a theoretical study 3. Absorption spectra and excited states of azacrown-containing styryl dyes and their complexes. Russ Chem Bull 57:2045–2055CrossRefGoogle Scholar
  52. 52.
    Freidzon AY, Bagatur’yants AA, Ushakov EN, Gromov SP, Alfimov MV (2011) Ab initio study of the structure, spectral, ionochromic, and fluorochromic properties of benzoazacrown-containing dyes as potential optical molecular sensors. Int J Quantum Chem 111:2649–2662CrossRefGoogle Scholar
  53. 53.
    Rusalov MV, Uzhinov BM, Alfimov MV, Gromov SP (2010) Photoinduced recoorodination of metal cations in complexes with chromogenic crown ethers. Russ Chem Bull 79:1099–1121CrossRefGoogle Scholar
  54. 54.
    Druzhinin SI, Rusalov MV, Uzhinov BM, Gromov SP, Sergeev SA, Alfimov MV (1999) Fluorescence of crowned butadienyl dye and its metal complexes. J Fluoresc 9:33–36CrossRefGoogle Scholar
  55. 55.
    Nasimova IR, Ushakov EN, Makhaeva EE, Fedorova OA, Gromov SP, Alfimov MV, Khokhlov AR (2002) Effect of a polymer matrix on the complexation and photochemical behavior of an azacrown-containing styryl dye. Polym Sci A 44:1313–1318Google Scholar
  56. 56.
    Brearley AM, Flom SR, Nagarajan V, Barbara PF (1986) Dynamic solvent effects on large-amplitude isomerization rates 2. 2-(2′-propenyl)anthracene and (E)-2-(but-2′-en-2′-yl)anthracene. J Phys Chem 90:2092–2099CrossRefGoogle Scholar
  57. 57.
    Hicks JM, Vandersall MT, Sitzmann EV, Eisenthal KB (1987) Polarity-dependent barriers and the photoisomerization dynamics of molecules in solution. Chem Phys Lett 135:413–420CrossRefGoogle Scholar
  58. 58.
    Alkindi AS, Al-Wahaibi YM, Muggeridge AH (2008) Physical properties (Density, excess molar volume, viscosity, surface tension, and refractive index) of ethanol+glycerol. J Chem Eng Data 53:2793–2796CrossRefGoogle Scholar
  59. 59.
    Vedernikov AI, Kuz’mina LG, Sazonov SK, Lobova NA, Loginov PS, Churakov AV, Strelenko YA, Howard JAK, Alfimov MV, Gromov SP (2007) Styryl dyes. Synthesis and study of the solid state [2+2] autophotocycloaddition by NMR spectroscopy and X-ray diffraction. Russ Chem Bull Int Ed 56:1860–1883CrossRefGoogle Scholar
  60. 60.
    Atabekyan LS, Vedernikov AI, Avakyan VG, Lobova NA, Gromov SP, Chibisov AK (2013) Photoprocesses in styryl dyes and their pseudorotaxane complexes with cucurbit[7]uril. J Photochem Photobio A 253:52–61CrossRefGoogle Scholar
  61. 61.
    Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution. Pure Appl Chem 83:2213–2228CrossRefGoogle Scholar
  62. 62.
    Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescence solute. J Phys Chem 65:229–235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michael V. Rusalov
    • 1
  • Boris M. Uzhinov
    • 1
  • Sergey I. Druzhinin
    • 2
  • Vladimir L. Ivanov
    • 1
  • Michael Ya. Melnikov
    • 1
  • Sergey P. Gromov
    • 3
  • Sergey K. Sazonov
    • 3
  • Michael V. Alfimov
    • 3
  1. 1.Department of ChemistryMV Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Universität Siegen, Physikalische ChemieSiegenGermany
  3. 3.Photochemistry CenterRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations