Journal of Fluorescence

, Volume 25, Issue 6, pp 1645–1654 | Cite as

Synthesis, Fluorescence Spectra, Redox Property and the DNA Binding Studies of 7-phenylacenaphtho[1,2-b]quinoxalin-7-ium chloride: Evidences of the Formation of Neutral Radical Analogue

  • Suman Kundu
  • Ananya Banerjee
  • Arpan De
  • Asma Yasmeen Khan
  • Gopinatha Suresh Kumar
  • Ranjan Bhadra
  • Prasanta Ghosh


Reaction of acenaphthoquinone with N-phenyl-o-phenylenediamine in methanol in presence of HCl yielded 7-phenylacenaphtho[1,2-b]quinoxalin-7-ium chloride, [1][Cl]. [1][Cl] is brightly fluorescencent in dichloromethane (λex = 403 nm and λem = 442, 464, 488 nm) and water (λex = 408 nm and λem = 545 nm). Density functional theory (DFT) and time dependent (TD) DFT calculations on [1]+ at the B3LYP level of the theory elucidated that the origin of the lower energy excitation at around 400 nm is due to π → π* transition. [1]+ is redox active and exhibits a reversible cathodic wave at −0.66 V referenced to Fc+/Fc couple due to [1]+/[1] redox couple. Electrogenerated neutral radical analogue [1] was characterized by electron paramagnetic resonance (EPR), UV–vis spectra and DFT calculations. DNA binding studies using the techniques of UV–vis absorption, fluorescence, circular dichroism (CD) spectra, viscosity, gel electrophoresis, hydrodynamic, isothermal titration calorimetry (ITC) and UV optical melting studies of [1][Cl] revealed that [1]+ is a strong DNA intercalator obeying neighbor exclusion principle. ITC experiment authenticated that the binding of [1]+ to DNA is entropy driven.


7-phenylacenaphtho[1,2-b]quinoxalin-7-ium chloride 7-phenylacenaphtho[1,2-b]quinoxalin radical DNA intercalator Biophysical studies 

Supplementary material

10895_2015_1651_MOESM1_ESM.doc (92 kb)
ESM 1Electronic absorption spectra of [1]+ obtained from TD DFT calculations (Fig. S1), Excitation energies, oscillator strengths, transition types and dominant contributions of UV–vis absorption bands of [1]+ obtained from TD DFT calculations (Table S1) and the coordinates of the optimized geometries of the [1]+ and [1] (Tables S2 and S3). (DOC 91 kb)


  1. 1.
    Benner K, Ihmels H, Kölsch S, Pithan PM (2014) Targeting a basic site-containing DNA with annelated quinolizinium derivatives: the influence of size, shape and substituents. Org Biomol Chem 12:1725–1734CrossRefPubMedGoogle Scholar
  2. 2.
    Singh M, Sur S, Rastogi GK, Jayaram B, Tandon V (2013) Bi and tri-substituted phenyl rings containing bisbenzimidazoles bind differentially with DNA duplexes: a biophysical and molecular simulation study. Mol BioSyst 9:2541–2553CrossRefPubMedGoogle Scholar
  3. 3.
    Jia T, Xiang J, Wang J, Guo P, Yu J (2013) Interactions of newly designed dicationic carbazole derivatives with double-stranded DNA: syntheses, binding studies and AFM imaging. Org Biomol Chem 11:5512–5520CrossRefPubMedGoogle Scholar
  4. 4.
    Bhadra K, Kumar GS (2011) Interaction of berberine, palmatine, coralyne, and sanguinarine to quadruplex DNA: a comparative spectroscopic and calorimetric study. Biochim Biophys Acta Gen Subj 1810:485–496CrossRefGoogle Scholar
  5. 5.
    Phillips T, Haq I, Thomas JA (2011) Water-soluble amino derivatives of free-base dppz- syntheses and DNA binding studies. Org Biomol Chem 9:3462–3470CrossRefPubMedGoogle Scholar
  6. 6.
    Shewach DS, Kuchta RD (2009) Introduction to cancer chemotherapeutics. Chem Rev 109:2859–2861PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Wilhelmsson LM, Kingi N, Bergman J (2008) Interactions of antiviral Indolo[2,3-b]quinoxaline derivatives with DNA. J Med Chem 51:7744–7750CrossRefPubMedGoogle Scholar
  8. 8.
    Phillips T, Rajput C, Twyman L, Haq I, Thomas JA (2005) Water-soluble organic dppz analogues-tuning DNA binding affinities, luminescence, and photo-redox properties. Chem. Commun. 4327–4329Google Scholar
  9. 9.
    Phillips T, Haq I, Meijer AJHM, Adams H, Soutar I, Swanson L, Sykes MJ, Thomas JA (2004) DNA binding of an organic dppz-based intercalator. Biochemistry 43:13657–13665CrossRefPubMedGoogle Scholar
  10. 10.
    Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200CrossRefPubMedGoogle Scholar
  11. 11.
    García-Nieto R, Manzanares I, Cuevas C, Gago F (2000) Increased DNA binding specificity for antitumor ecteinascidin 743 through Protein-DNA interactions? J Med Chem 43:4367–4369CrossRefPubMedGoogle Scholar
  12. 12.
    Lippert B (1999) In: Chemistry and biochemistry of a leading anticancer drug. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  13. 13.
    Sinan M, Panda M, Ghosh A, Dhara K, Fanwick PE, Chattopadhyay DJ, Goswami S (2008) Mild synthesis of a family of planar triazinium cations via proton-assisted cyclization of pyridyl containing Azo compounds and studies on DNA intercalation. J Am Chem Soc 130:5185–5193CrossRefPubMedGoogle Scholar
  14. 14.
    Clark ML, Green RL, Johnson OE, Fanwick PE, McMillin DR (2008) DNA-binding and physical studies of Pt(4′-NR2-trpy)CN+ systems (trpy = 2,2′:6′,2′′-terpyridine). Inorg Chem 47:9410–9418CrossRefPubMedGoogle Scholar
  15. 15.
    Kundu S, Biswas MK, Banerjee A, Bhadra K, Kumar GS, Drew MGB, Bhadra R, Ghosh P (2013) Synthesis, structure and DNA binding studies of 9-phenyldibenzo[a, c] phenazin-9-ium. RSC Adv 3:3054–3061CrossRefGoogle Scholar
  16. 16.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin JA, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision E.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  17. 17.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford, U.K.Google Scholar
  18. 18.
    Salahub DR, Zerner MC (1989) The challenge of d and f electrons; ACS symposium series 394. American Chemical Society, Washington, DCGoogle Scholar
  19. 19.
    Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. J Phys Rev A 140:1133–1138CrossRefGoogle Scholar
  20. 20.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871CrossRefGoogle Scholar
  21. 21.
    Stratmann RE, Scuseria GE, Frisch M (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224CrossRefGoogle Scholar
  22. 22.
    Casida ME, Jamoroski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449CrossRefGoogle Scholar
  23. 23.
    Bauernschmitt R, Haser M, Treutler O, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 454:454–464CrossRefGoogle Scholar
  24. 24.
    Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5651CrossRefGoogle Scholar
  25. 25.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Par. Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  26. 26.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  27. 27.
    Pulay P (1982) Improved SCF convergence acceleration. J Comput Chem 3:556–560CrossRefGoogle Scholar
  28. 28.
    Schlegel HB, McDouall JJ (1991) In: Ogretir C, Csizmadia IG (eds) Computational advances in organic chemistry. Kluwer, The Netherlands, pp 167–185Google Scholar
  29. 29.
    Petersson GA, Al-Laham MA (1991) A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. J Chem Phys 94:6081–6090CrossRefGoogle Scholar
  30. 30.
    Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. J Chem Phys 89:2193–2218CrossRefGoogle Scholar
  31. 31.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681CrossRefPubMedGoogle Scholar
  32. 32.
    Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  33. 33.
    Sinha R, Kumar GS (2009) Interaction of isoquinoline alkaloids with an RNA triplex: structural and thermodynamic studies of berberine, palmatine, and coralyne binding to Poly(U). Poly(A)*Poly(U). J Phys Chem B 113:13410–13420CrossRefPubMedGoogle Scholar
  34. 34.
    McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86:469–489CrossRefPubMedGoogle Scholar
  35. 35.
    Sinha R, Hossain M, Kumar GS (2007) RNA targeting by DNA binding drugs: Structural, conformational and energetic aspects of the binding of quinacrine and DAPI to A-form and HL-form of poly(rC)·poly(rG). Biochim Biophys Acta Gen Subj 1770:1636–1650CrossRefGoogle Scholar
  36. 36.
    Satyanarayana S, Dabrowiak JC, Chaires JB (1992) Neither Δ- nor Λ-Tris(phenanthroline)ruthenium(II) binds to DNA by classical interaction. Biochemistry 31:9319–9324CrossRefPubMedGoogle Scholar
  37. 37.
    Rajendran A, Nair BU (2006) Unprecedented dual binding behaviour of acridine group of dye: a combined experimental and theoretical investigation for the development of anticancer chemotherapeutic agents. Biochim Biophys Acta Gen Subj 1760:1794–1801CrossRefGoogle Scholar
  38. 38.
    Sigmon J, Larcom LL (1996) The effect of ethidium bromide on mobility of DNA fragments in agarose gel electrophoresis. Electrophoresis 17:1524–1527CrossRefPubMedGoogle Scholar
  39. 39.
    Sinha R, Islam MM, Bhadra K, Kumar GS, Banerjee A, Maiti M (2006) The binding of DNA intercalating and non-intercalating compounds to A-form and protonated form of poly(rC)·poly(rG): Spectroscopic and viscometric study. Bioorg Med Chem 14:800–814CrossRefPubMedGoogle Scholar
  40. 40.
    Bhadra K, Kumar GS (2010) Isoquinoline alkaloids and their binding with DNA: calorimetry and thermal analysis applications. Mini-Rev Med Chem 10:1235–1247CrossRefPubMedGoogle Scholar
  41. 41.
    Das A, Kumar GS (2012) Drug-DNA binding thermodynamics: a comparative study of aristololactam-β-d-glucoside and daunomycin. J Chem Thermodyn 54:421–428CrossRefGoogle Scholar
  42. 42.
    Chowdhury SR, Islam MM, Kumar GS (2010) Binding of the anticancer alkaloid sanguinarine to double stranded RNAs: insights into the structural and energetics aspects. Mol BioSyst 6:1265–1276CrossRefPubMedGoogle Scholar
  43. 43.
    Adhikari A, Hossain M, Maiti M, Kumar GS (2008) Energetics of the binding of phototoxic and cytotoxic plant alkaloid sanguinarine to DNA: isothermal titration calorimetric studies. J Mol Struct 889:54–63CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Suman Kundu
    • 1
  • Ananya Banerjee
    • 2
  • Arpan De
    • 2
  • Asma Yasmeen Khan
    • 3
  • Gopinatha Suresh Kumar
    • 3
  • Ranjan Bhadra
    • 1
  • Prasanta Ghosh
    • 1
  1. 1.Department of ChemistryR. K. M. Residential CollegeKolkataIndia
  2. 2.VJRC R&D Center, Vijaygarh Jyotish Ray CollegeKolkataIndia
  3. 3.Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical BiologyKolkataIndia

Personalised recommendations