Journal of Fluorescence

, Volume 25, Issue 6, pp 1601–1614 | Cite as

2-Carbamido-1,3-indandione – a Fluorescent Molecular Probe and Sunscreen Candidate

  • Venelin EnchevEmail author
  • Ivan Angelov
  • Vanya Mantareva
  • Nadezhda Markova


The present work reports theoretical and experimental studies on the photophysical properties of two tautomeric forms of 2-carbamido-1,3-indandione (CAID). By means of UV-vis, steady-state and time-dependent fluorescence spectroscopy it is shown that both enol forms, 2-(hydroxylaminomethylidene)-indan-1,3-dione and 2-carboamide-1-hydroxy-3-oxo-indan, coexist in solution. On the base of spectroscopic studies of CAID interaction with human serum albumin and DNA sequences, it was shown that the compound has potential and it is suitable for use as fluorescent molecular probe for investigation of different biomolecules. CAID shows relatively high photostability within 3 h irradiation period. Such behavior of the investigated compound supposes possibilities for using of the CAID molecule as sunscreen because of strong absorption in UVA, UVB and UVC light spectra.


2-carbamido-1,3-indandion Tautomerism Fluorescence Sunscreen 



The authors are grateful to Dr. Ekaterina Borisova and Ms. Alexandra Zhelyazkova, Institute of Electronics, Bulgarian Academy of Sciences for technical support. Two of the authors (IA and VM) acknowledge the financial support of the National Science Fund under grant DFNI-02/9/2014.


  1. 1.
    Horton RL, Murdock KC (1960) 2-substituted 1,3-indandiones. J Org Chem 25:938–941CrossRefGoogle Scholar
  2. 2.
    Enchev V, Abrahams I, Angelova S, Ivanova G (2005) Fast intramolecular proton transfer in 2-(hydroxyaminomethylidene)-indan-1,3-dione. J Mol Struct Theochem 719:169–175CrossRefGoogle Scholar
  3. 3.
    Angelova S, Enchev V, Kostova K, Rogojerov M, Ivanova G (2007) Theoretical and spectroscopic study of 2-substituted indan-1,3-diones: a coherent picture of the tautomeric equilibrium. J Phys Chem A 111:9901–9913CrossRefPubMedGoogle Scholar
  4. 4.
    Song J, Mishima M, Rappoport Z (2007) Isomeric solid enols on ring- and amide-carbonyls of substituted 2-carbanilido-1,3-indandiones. Org Lett 9:4307–4310CrossRefPubMedGoogle Scholar
  5. 5.
    Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Springer, Third EditionGoogle Scholar
  6. 6.
    Demchenko AP (2014) Practical aspects of wavelength ratiometry in the studies of intermolecular interactions. J Mol Struct 1077:51–67CrossRefGoogle Scholar
  7. 7.
    Wu J, Liu W, Ge J, Zhang H, Wang P (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40:3483–3495CrossRefPubMedGoogle Scholar
  8. 8.
    Craig IM, Duong HM, Wudl F, Schwartz BJ (2009) A new route to dual fluorescence: spectroscopic properties of the valence tautomers of a 3-(2H)-isoquinolinone derivative. Chem Phys Lett 477:319–324CrossRefGoogle Scholar
  9. 9.
    Zhao J, Ji S, Chen Y, Guo H, Yang P (2012) Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys Chem Chem Phys 14:8803–8817CrossRefPubMedGoogle Scholar
  10. 10.
    Demchenko AP (2006) Visualization and sensing of intermolecular interactions with two-color fluorescent probes. FEBS Lett 580:2951–2957CrossRefPubMedGoogle Scholar
  11. 11.
    Galindo F, Becerril J, Isabel Burguete M, Luis SV, Vigara L (2004) Synthesis and study of a cyclophane displaying dual fluorescence emission: a novel ratiometric sensor for carboxylic acids in organic medium. Tetrahedron Lett 45:1659–1662CrossRefGoogle Scholar
  12. 12.
    Ercelen S, Klymchenko AS, Demchenko AP (2003) Novel two-color fuorescence probe with extreme specificity to bovine serum albumin. FEBS Lett 538:25–28CrossRefPubMedGoogle Scholar
  13. 13.
    Goswami S, Maity S, Das AK, Maity AC, Mandal TK, Samanta S (2013) Remarkable ESIPT induced NIR emission by a selective colorimetric dibenzimidazolo diimine sensor for acetate. Tetrahedron Lett 54:5232–5235CrossRefGoogle Scholar
  14. 14.
    Suh D, Chaires JB (1995) Criteria for the mode of binding of DNA binding agents. Bioorg Med Chem 3:723–728CrossRefPubMedGoogle Scholar
  15. 15.
    Rai R, Srinivas CR (2007) Photoprotection. Indian J Dermatol Venereol Leprol 73:73–79CrossRefPubMedGoogle Scholar
  16. 16.
    Bruls WA, Slaper H, van der Leun JC, et al. (1984) Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths. Photochem Photobiol 40:485–494CrossRefPubMedGoogle Scholar
  17. 17.
    Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 571:3–17CrossRefPubMedGoogle Scholar
  18. 18.
    De Fabo EC, Noonan FP (1983) Mechanism of immune suppression by ultraviolet irradiation in vivo. I evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med 158:84–98CrossRefPubMedGoogle Scholar
  19. 19.
    Heck DE, Vetrano AM, Mariano TM, et al. (2003) UVB light stimulates production of reactive oxygen species: unexpected role for catalase. J Biol Chem 278:22432–22436CrossRefPubMedGoogle Scholar
  20. 20.
    Gonzalez S, Gilaberte Y, Philips N, Juarranz A (2011) Current trends in photoprotection - a new generation of oral photoprotectors. Open Dermatol J 5:6–14CrossRefGoogle Scholar
  21. 21.
    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  22. 22.
    Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681CrossRefPubMedGoogle Scholar
  23. 23.
    Bauerschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464CrossRefGoogle Scholar
  24. 24.
    Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037CrossRefPubMedGoogle Scholar
  25. 25.
    Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  26. 26.
    Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  27. 27.
    Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222CrossRefGoogle Scholar
  28. 28.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, Defrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. 23. A polarization-type basis set for 2nd-row elements. J Chem Phys 77:3654–3665CrossRefGoogle Scholar
  29. 29.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  30. 30.
    Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp. 1167–1189CrossRefGoogle Scholar
  31. 31.
    Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem Photobiol 75:327–334CrossRefPubMedGoogle Scholar
  32. 32.
    Tang K-C, Chang M-J, Lin T-Y, Pan H-A, Fang T-C, Chen K-Y, Hung W-Y, Hsu Y-H, Chou P-T (2011) Fine tuning the energetics of excited-state intramolecular proton transfer (ESIPT): white light generation in a single ESIPT system. J Am Chem Soc 133:17738–17745CrossRefPubMedGoogle Scholar
  33. 33.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. John Wiley and Son Inc., New YorkGoogle Scholar
  34. 34.
    Pasternack RF, Bustamante C, Collings PJ, Giannetto A,. Gibbs EJ (1993) Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J Am Chem Soc 115:5393–5399.CrossRefGoogle Scholar
  35. 35.
    Palmer GM, Keely PJ, Breslin TM, Ramanujam N (2003) Autofluorescence spectroscopy of normal and malignant human breast cell lines. Photochem Photobiol 78:462–469CrossRefPubMedGoogle Scholar
  36. 36.
    Da Costa RS, Andersson H, Wilson BC (2003) Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy. Photochem Photobiol 78:384–392CrossRefGoogle Scholar
  37. 37.
    Lacey JA, Phillip D (2002) Fluorescence lifetime measurements of disulfonated aluminium phthalocyanine in the presence of microbial cells. Photochem Photobiol Sci 1:378–383CrossRefPubMedGoogle Scholar
  38. 38.
    Ziolek M, Kubicki J, Maciejewski A, Naskrecki R, Luniewski W, Grabowska A (2006) Unusual conformational effects in proton transfer kinetics of an excited photochromic Schiff base. J Photochem Photobiol A 180:101–108CrossRefGoogle Scholar
  39. 39.
    Rodembusch FS, Leusin FP, da Costa Medina LF, Brandelli A, Stefani V (2005) Synthesis and spectroscopic characterization of new ESIPT fluorescent protein probes. Photochem Photobiol Sci 4:254–259CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Venelin Enchev
    • 1
    Email author
  • Ivan Angelov
    • 1
  • Vanya Mantareva
    • 1
  • Nadezhda Markova
    • 1
  1. 1.Institute of Organic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations