Advertisement

Journal of Fluorescence

, Volume 25, Issue 4, pp 1055–1061 | Cite as

Application of Partial Least Square (PLS) Analysis on Fluorescence Data of 8-Anilinonaphthalene-1-Sulfonic Acid, a Polarity Dye, for Monitoring Water Adulteration in Ethanol Fuel

  • Keshav Kumar
  • Ashok Kumar Mishra
ORIGINAL ARTICLE

Abstract

Fluorescence characteristic of 8-anilinonaphthalene-1-sulfonic acid (ANS) in ethanol-water mixture in combination with partial least square (PLS) analysis was used to propose a simple and sensitive analytical procedure for monitoring the adulteration of ethanol by water. The proposed analytical procedure was found to be capable of detecting even small adulteration level of ethanol by water. The robustness of the procedure is evident from the statistical parameters such as square of correlation coefficient (R2), root mean square of calibration (RMSEC) and root mean square of prediction (RMSEP) that were found to be well with in the acceptable limits.

Keyword

Ethanol Water ANS 8-anilinonaphthalene-1-sulfonic acid PLS-analysis Fuel-adulteration 

Notes

Acknowledgments

Authors thank Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing the financial support to carryout the work.

References

  1. 1.
    Kumar K, Mishra AK (2012) Quantification of ethanol in petrol–ethanol blends: use of Reichardt’s ET (30) dye in introducing a petrol batch independent calibration procedure. Talanta 100:414–418PubMedCrossRefGoogle Scholar
  2. 2.
    Kumar K, Mishra AK (2012) Quantification of ethanol in ethanol-petrol and biodiesel in biodiesel-diesel blends using fluorescence spectroscopy and multivariate methods. J Fluoresc 22:339–347PubMedCrossRefGoogle Scholar
  3. 3.
    Fernandes HL, Raimundo IM Jr, Pasquini C, Rohwedder JJR (2008) Simultaneous determination of methanol and ethanol in gasoline using NIR spectroscopy: effect of gasoline composition. Talanta 75:804–810PubMedCrossRefGoogle Scholar
  4. 4.
    Pereira PF, Marra MC, Munoz RAA, Richter EM (2012) Fast batch injection analysis system for on-site determination of ethanol in gasohol and fuel ethanol. Talanta 90:99–102PubMedCrossRefGoogle Scholar
  5. 5.
    Prasad PR, Rao KSR, Bhuvaneswari K, Praveena N, Srikanth YVV (2008) Determination of ethanol in blend petrol by gas chromatography and Fourier transform infrared spectroscopy. Energy Sources A 30:1534–1539CrossRefGoogle Scholar
  6. 6.
    Aleme HG, Costa LM, Barbeira PJS (2009) Determination of ethanol and specific gravity in gasoline by distillation curves and multivariate analysis. Talanta 78:1422–1428PubMedCrossRefGoogle Scholar
  7. 7.
    Yüskel F, Yüskel B (2004) The use of ethanol-gasoline blend as a fuel in an SI engine. Renew Energy 29:1181–1191CrossRefGoogle Scholar
  8. 8.
    Huang J, Wang Y, Li S, Roskilly AP, Yu H, Li H (2009) Experimental investigation on the performance and emissions of a diesel engine fuelled with ethanol-diesel blends. Appl Therm Eng 29:2484–2490CrossRefGoogle Scholar
  9. 9.
    Chotwichien A, Luengnaruemitchai A, Jai-In S (2009) Utilization of palm oil alkyl esters as an additive in ethanol-diesel and butanol-diesel blends. Fuel 88:1618–1624CrossRefGoogle Scholar
  10. 10.
    Hansen AC, Zhang Q, Lyne PWL (2005) Ethanol-diesel fuel blends-a review. Bioresour Technol 96:277–285PubMedCrossRefGoogle Scholar
  11. 11.
    Buenoa L, Paixão TRLC (2011) A copper interdigitated electrode and chemometrical tools used for the discrimination of the adulteration of ethanol fuel with water. Talanta 87:210–215CrossRefGoogle Scholar
  12. 12.
    Paixao TRLC, Cardoso JL, Bertotti M (2007) Fast batch injection analysis system for on-site determination of ethanol in gasohol and fuel ethanol. Fuel 86:1181–1185CrossRefGoogle Scholar
  13. 13.
    Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Direct ethanol fuel cells for transport and stationary applications -a comprehensive review. Appl Energy 145:80–103CrossRefGoogle Scholar
  14. 14.
    Kamarudin MZF, Kamarudin SK, Masdar MS, Daud WRW (2013) Review: direct ethanol fuel cells. Int J Hydrog Energy 38:9438–9453CrossRefGoogle Scholar
  15. 15.
    Lakowicz JR (2006) Fluorescence spectroscopy, 3rd edn. Springer, New YorkGoogle Scholar
  16. 16.
    Valuer B (2001) Molecular fluorescence: principles and applications. Wiley-VCH Verlag GmbH, WeinheimCrossRefGoogle Scholar
  17. 17.
    Slavik J (1982) Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694:1–25PubMedCrossRefGoogle Scholar
  18. 18.
    Abuin EB, Lissi EA, Alexisaspe E, Gonzalez FD, Varas JM (1997) Fluorescence of 8-anilinonaphthalene-1-sulfonate and properties of sodium dodecyl sulfate micelles in water-urea mixtures. J Colloid Interface Sci 186:332–338PubMedCrossRefGoogle Scholar
  19. 19.
    Brand L, Gohlke JR (1972) Fluorescence probes for structure. Annu Rev Biochem 41:843–868PubMedCrossRefGoogle Scholar
  20. 20.
    Gasymov OK, Glasgow BJ (2007) ANS fluorescence: potential to augment the identification of the external binding sites of proteins. Biochim Biophys Acta 1774:403–411PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Sahu K, Mondal SK, Ghosh S, Roy D, Bhattacharyya K (2006) Ultrafast fluorescence resonance energy transfer in a micelle. J Chem Phys 124:124909-1–124909-7CrossRefGoogle Scholar
  22. 22.
    Mohapatra M, Mishra AK (2013) Photophysical behaviour of 8-anilino-1-naphthalenesulfonate in vesicles of pulmonary surfactant dipalmitoylphosphatidylcholine (DPPC) and its sensitivity toward the bile salt-vesicle interaction. Langmuir 29:11396–11404PubMedCrossRefGoogle Scholar
  23. 23.
    Weber G, Laurence DJR (1954) Fluorescent indicators of adsorption in aqueous solution and on the solid phase, Biochim J 56: xxxiGoogle Scholar
  24. 24.
    Thomas TL, Mishra AK (2002) ANS fluorescence as a tool to monitor cross - linking polymerization of acrylamide. Eur Polym J 38:1805–1810CrossRefGoogle Scholar
  25. 25.
    Geladi P, Kowalski B (1986) Partial least square regression: a tutorial. Anal Chim Acta 185:1–17CrossRefGoogle Scholar
  26. 26.
    Kramer R (1998) Chemometric techniques for quantitative analysis. Marcel Decker Inc, New YorkCrossRefGoogle Scholar
  27. 27.
    Wise BM, Gallaghar NB, Bro R, Shaver JM (2006) PLS_toolbox 4.0. Eigen vector research, USAGoogle Scholar
  28. 28.
    ASTM-American society for testing and materials (2001) Standard test method for water using volumetric Karl Fischer titration. ASTM E203-08Google Scholar
  29. 29.
    Figueiredo MKK, Costa-Felix RPB, Maggi LE, Alvarenga AV (2012) Biofuel ethanol adulteration detection using an ultrasonic measurement method. Fuel 91:209–212CrossRefGoogle Scholar
  30. 30.
    Rodrigues DBR, Peres HEM, Becari W (2013) Ethanol fuel analysis by time-domain reflectometry. Microw Optoelectron Conf (IMOC) SBMO/IEEE MTT-S Int. doi: 10.1109/IMOC.2013.6646441 Google Scholar
  31. 31.
    Goncalves L, Mendonca D, Torikai D, Morimoto N, Ibrahim RC (2008) Evaluation of Brazilian fuel quality by a capacitive microsensor. SAE Tech Pap 2008-36-0228. doi: 10.4271/2008-36-0228 Google Scholar
  32. 32.
    Silva AC, Pontes LFBL, Pimentel MF, Pontes MJC (2012) Detection of adulteration in hydrated ethyl alcohol fuel using infrared spectroscopy and supervised pattern recognition methods. Talanta 93:129–134PubMedCrossRefGoogle Scholar
  33. 33.
    Mizuno K, Miyashita Y, Shindo Y (1995) NMR and FT-IR studies of hydrogen bonds in ethanol-water mixtures. J Phys Chem 99:3225–3228CrossRefGoogle Scholar
  34. 34.
    Steel RGD, Torrie JH (1960) Principles and procedures of statistics. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology-MadrasChennaiIndia

Personalised recommendations