Advertisement

Journal of Fluorescence

, Volume 25, Issue 2, pp 361–367 | Cite as

A Magnetic Nanoparticle-Based Time-Resolved Fluoroimmunoassay for Determination of the Cytokeratin 19 Fragment in Human Serum

  • Guanfeng Lin
  • Tiancai Liu
  • Jingyuan Hou
  • Zhiqi Ren
  • Jianwei Zhou
  • Qianni Liang
  • Zhenhua Chen
  • Wenqi DongEmail author
  • Yingsong WuEmail author
ORIGINAL PAPER

Abstract

A sensitive, rapid and novel measurement method for cytokeratin 19 fragment (CYFRA 21–1) in human serum by magnetic particle-based time-resolved fluoroimmunoassay (TRFIA) is described. Built on a sandwich-type immunoassay format, analytes in samples were captured by one monoclonal antibody coating onto the surface of magnetic beads and “sandwiched” by another monoclonal antibody labeled with europium chelates. The coefficient variations of the method were lower than 7 %, and the recoveries were in the range of 90–110 % for serum samples. The lower limit of quantitation of the present method for CYFRA 21–1 was 0.78 ng/ml. The correlation coefficient of CYFRA 21–1 values obtained by our novel TRFIA and CLIA was 0.980. The present novel TRFIA demonstrated high sensitivity, wider effective detection range and excellent reproducibility for determination of CYFRA 21–1 can be useful for early screening and prognosis evaluation of patients with non-small cell lung cancer.

Keywords

Magnetic nanoparticles Time-resolved fluoroimmunoassay Cytokeratin 19 fragment 

Abbreviations

NSCLC

Non-small cell lung cancer

CYFRA 21–1

Cytokeratin 19 fragment

TRFIA

Time-resolved fluoroimmunoassay

BSA

Ovine serum albumin

MES

4-morpholineethanesulfonic acid

NHS

N-hydroxysulfosuccinimide

EDC

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

Eu

Europium

CLIA

Chemiluminescence immunoassay

McAb

Monoclonal antibody

LLOQ

Lower limit of quantitation

RE

Relative error

CV

Coefficient of variation

SD

Standard deviation

Notes

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant No. 81271931) and the Natural Science Foundation of Guangdong Province (Grant No. S2012010009547).

References

  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249CrossRefPubMedGoogle Scholar
  2. 2.
    Strauss GM, Herndon JE 2nd, Maddaus MA, Johnstone DW, Johnson EA, Harpole DH, Gillenwater HH, Watson DM, Sugarbaker DJ, Schilsky RL, Vokes EE, Green MR (2008) Adjuvant paclitaxel plus carboplatin compared with observation in stage IB non-small-cell lung cancer: CALGB 9633 with the Cancer and Leukemia Group B, Radiation Therapy Oncology Group, and North Central Cancer Treatment Group Study Groups. J Clin Oncol 26(31):5043–5051CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Goya T, Asamura H, Yoshimura H, Kato H, Shimokata K, Tsuchiya R, Sohara Y, Miya T, Miyaoka E, Japanese Joint Committee of Lung Cancer R (2005) Prognosis of 6644 resected non-small cell lung cancers in Japan: a Japanese lung cancer registry study. Lung Cancer 50(2):227–234CrossRefPubMedGoogle Scholar
  4. 4.
    Hanagiri T, Baba T, So T, Yasuda M, Sugaya M, Ono K, So T, Uramoto H, Takenoyama M, Yasumoto K (2010) Time trends of surgical outcome in patients with non-small cell lung cancer. J Thorac Oncol 5(6):825–829CrossRefPubMedGoogle Scholar
  5. 5.
    Schiller JH (2001) Current standards of care in small-cell and non-small-cell lung cancer. Oncology 61(Suppl 1):3–13CrossRefPubMedGoogle Scholar
  6. 6.
    Hanagiri T, Sugaya M, Takenaka M, Oka S, Baba T, Shigematsu Y, Nagata Y, Shimokawa H, Uramoto H, Takenoyama M, Yasumoto K, Tanaka F (2011) Preoperative CYFRA 21–1 and CEA as prognostic factors in patients with stage I non-small cell lung cancer. Lung Cancer 74(1):112–117CrossRefPubMedGoogle Scholar
  7. 7.
    Mulshine JL, Sullivan DC (2005) Clinical practice. Lung cancer screening. N Engl J Med 352(26):2714–2720CrossRefPubMedGoogle Scholar
  8. 8.
    Wang P, Piao Y, Zhang X, Li W, Hao X (2013) The concentration of CYFRA 21–1, NSE and CEA in cerebro-spinal fluid can be useful indicators for diagnosis of meningeal carcinomatosis of lung cancer. Cancer Biomark 13(2):123–130PubMedGoogle Scholar
  9. 9.
    Pujol JL, Grenier J, Daures JP, Daver A, Pujol H, Michel FB (1993) Serum fragment of cytokeratin subunit 19 measured by CYFRA 21–1 immunoradiometric assay as a marker of lung cancer. Cancer Res 53(1):61–66PubMedGoogle Scholar
  10. 10.
    Vollmer RT, Govindan R, Graziano SL, Gamble G, Garst J, Kelley MJ, Christenson RH (2003) Serum CYFRA 21–1 in advanced stage non-small cell lung cancer: an early measure of response. Clin Cancer Res 9(5):1728–1733PubMedGoogle Scholar
  11. 11.
    Ando S, Kimura H, Iwai N, Yamamoto N, Iida T (2003) Positive reactions for both Cyfra21-1 and CA125 indicate worst prognosis in non-small cell lung cancer. Anticancer Res 23(3C):2869–2874PubMedGoogle Scholar
  12. 12.
    Reinmuth N, Brandt B, Semik M, Kunze WP, Achatzy R, Scheld HH, Broermann P, Berdel WE, Macha HN, Thomas M (2002) Prognostic impact of Cyfra21-1 and other serum markers in completely resected non-small cell lung cancer. Lung Cancer 36(3):265–270CrossRefPubMedGoogle Scholar
  13. 13.
    Ando S, Suzuki M, Yamamoto N, Iida T, Kimura H (2004) The prognostic value of both neuron-specific enolase (NSE) and Cyfra21-1 in small cell lung cancer. Anticancer Res 24(3b):1941–1946PubMedGoogle Scholar
  14. 14.
    Pujol JL, Quantin X, Jacot W, Boher JM, Grenier J, Lamy PJ (2003) Neuroendocrine and cytokeratin serum markers as prognostic determinants of small cell lung cancer. Lung Cancer 39(2):131–138CrossRefPubMedGoogle Scholar
  15. 15.
    Holdenrieder S, Von Pawel J, Duell T, Feldmann K, Raith H, Schollen A, Nagel D, Stieber P (2010) Clinical relevance of thymidine kinase for the diagnosis, therapy monitoring and prognosis of non-operable lung cancer. Anticancer Res 30(5):1855–1862PubMedGoogle Scholar
  16. 16.
    Takada M, Masuda N, Matsuura E, Kusunoki Y, Matui K, Nakagawa K, Yana T, Tuyuguchi I, Oohata I, Fukuoka M (1995) Measurement of cytokeratin 19 fragments as a marker of lung cancer by CYFRA 21–1 enzyme immunoassay. Br J Cancer 71(1):160–165CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Chapman MH, Sandanayake NS, Andreola F, Dhar DK, Webster GJ, Dooley JS, Pereira SP (2011) Circulating CYFRA 21–1 is a specific diagnostic and prognostic biomarker in biliary tract cancer. J Clin Exp Hepatol 1(1):6–12CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Kuropkat C, Werner JA (2003) Analytical and clinical evaluation of CYFRA 21–1 by electrochemiluminescent immunoassay in head and neck squamous cell carcinoma. J Laryngol Otol 117(12):1007–1008, author reply 1008–1009CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu L, Xu L, Jia N, Huang B, Tan L, Yang S, Yao S (2013) Electrochemical immunoassay for carcinoembryonic antigen using gold nanoparticle–graphene composite modified glassy carbon electrode. Talanta 116:809–815CrossRefPubMedGoogle Scholar
  20. 20.
    Lovgren T, Hemmila I, Pettersson K, Eskola JU, Bertoft E (1984) Determination of hormones by time-resolved fluoroimmunoassay. Talanta 31(10 Pt 2):909–916CrossRefPubMedGoogle Scholar
  21. 21.
    Hemmila I, Dakubu S, Mukkala VM, Siitari H, Lovgren T (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137(2):335–343CrossRefPubMedGoogle Scholar
  22. 22.
    Dickson EF, Pollak A, Diamandis EP (1995) Ultrasensitive bioanalytical assays using time-resolved fluorescence detection. Pharmacol Ther 66(2):207–235CrossRefPubMedGoogle Scholar
  23. 23.
    Hemmila I (1985) Fluoroimmunoassays and immunofluorometric assays. Clin Chem 31(3):359–370PubMedGoogle Scholar
  24. 24.
    Kricka LJ (1994) Selected strategies for improving sensitivity and reliability of immunoassays. Clin Chem 40(3):347–357PubMedGoogle Scholar
  25. 25.
    Adlercreutz H, Wang GJ, Lapcik O, Hampl R, Wahala K, Makela T, Lusa K, Talme M, Mikola H (1998) Time-resolved fluoroimmunoassay for plasma enterolactone. Anal Biochem 265(2):208–215CrossRefPubMedGoogle Scholar
  26. 26.
    Huo T, Wang L, Liu L, Chu X, Xu C (2006) Rapid time-resolved fluoroimmunoassay for diethylstilbestrol residues in chicken liver. Anal Biochem 357(2):272–276CrossRefPubMedGoogle Scholar
  27. 27.
    Lin GF, Liu TC, Zou LP, Hou JY, Wu YS (2013) Development of a dual-label time-resolved fluoroimmunoassay for the detection of alpha-fetoprotein and hepatitis B virus surface antigen. Luminescence 28(3):401–406CrossRefPubMedGoogle Scholar
  28. 28.
    Lin G, Huang H, Liu T, He C, Liu J, Chen S, Hou J, Ren Z, Dong W, Wu Y (2014) A time-resolved fluoroimmunoassay for the quantitation of rabies virus nucleoprotein in the rabies vaccine. J Virol Methods 206:89–94CrossRefPubMedGoogle Scholar
  29. 29.
    Hou JY, Liu TC, Lin GF, Li ZX, Zou LP, Li M, Wu YS (2012) Development of an immunomagnetic bead-based time-resolved fluorescence immunoassay for rapid determination of levels of carcinoembryonic antigen in human serum. Anal Chim Acta 734:93–98CrossRefPubMedGoogle Scholar
  30. 30.
    Ren ZQ, Liu TC, Hou JY, Chen MJ, Chen ZH, Lin GF, Wu YS (2013) A rapid and sensitive method based on magnetic beads for the detection of hepatitis B virus surface antigen in human serum. Luminescence 29(6):591–7Google Scholar
  31. 31.
    Hou JY, Liu TC, Ren ZQ, Chen MJ, Lin GF, Wu YS (2013) Magnetic particle-based time-resolved fluoroimmunoassay for the simultaneous determination of alpha-fetoprotein and the free beta-subunit of human chorionic gonadotropin. Analyst 138(13):3697–3704CrossRefPubMedGoogle Scholar
  32. 32.
    Liu TC, Chen MJ, Ren ZQ, Hou JY, Lin GF, Wu YS (2014) Development of an improved time-resolved fluoroimmunoassay for simultaneous quantification of C-peptide and insulin in human serum. Clin Biochem 47(6):439–444CrossRefPubMedGoogle Scholar
  33. 33.
    Findlay JW, Smith WC, Lee JW, Nordblom GD, Das I, DeSilva BS, Khan MN, Bowsher RR (2000) Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J Pharm Biomed Anal 21(6):1249–1273CrossRefPubMedGoogle Scholar
  34. 34.
    De Pauw PE, Vermeulen I, Ubani OC, Truyen I, Vekens EM, van Genderen FT, De Grijse JW, Pipeleers DG, Van Schravendijk C, Gorus FK (2008) Simultaneous measurement of plasma concentrations of proinsulin and C-peptide and their ratio with a trefoil-type time-resolved fluorescence immunoassay. Clin Chem 54(12):1990–1998CrossRefPubMedGoogle Scholar
  35. 35.
    Tokairin T, Nishikawa Y, Doi Y, Watanabe H, Yoshioka T, Su M, Omori Y, Enomoto K (2002) A highly specific isolation of rat sinusoidal endothelial cells by the immunomagnetic bead method using SE-1 monoclonal antibody. J Hepatol 36(6):725–733CrossRefPubMedGoogle Scholar
  36. 36.
    Careri M, Elviri L, Lagos JB, Mangia A, Speroni F, Terenghi M (2008) Selective and rapid immunomagnetic bead-based sample treatment for the liquid chromatography-electrospray ion-trap mass spectrometry detection of Ara h3/4 peanut protein in foods. J Chromatogr A 1206(2):89–94CrossRefPubMedGoogle Scholar
  37. 37.
    Wang X, Zhang QY, Li ZJ, Ying XT, Lin JM (2008) Development of high-performance magnetic chemiluminescence enzyme immunoassay for alpha-fetoprotein (AFP) in human serum. Clin Chim Acta 393(2):90–94CrossRefPubMedGoogle Scholar
  38. 38.
    Lin JY, Chen YC (2011) Functional magnetic nanoparticle-based trapping and sensing approaches for label-free fluorescence detection of DNA. Talanta 86:200–207CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Guanfeng Lin
    • 1
  • Tiancai Liu
    • 1
  • Jingyuan Hou
    • 1
  • Zhiqi Ren
    • 1
  • Jianwei Zhou
    • 1
  • Qianni Liang
    • 1
  • Zhenhua Chen
    • 1
  • Wenqi Dong
    • 2
    Email author
  • Yingsong Wu
    • 1
    Email author
  1. 1.Institute of Antibody Engineering, School of BiotechnologySouthern Medical UniversityGuangzhouChina
  2. 2.Department of Biopharmaceutical, School of BiotechnologySouthern Medical UniversityGuangzhouChina

Personalised recommendations