Journal of Fluorescence

, Volume 24, Issue 5, pp 1371–1378 | Cite as

Analysis of Quantum Rod Diffusion by Polarized Fluorescence Correlation Spectroscopy

ORIGINAL PAPER

Abstract

To measure the polarization dependence of fluorescent probes, a confocal-microscope-based polarized fluorescence correlation spectroscopy system was developed, and the polarization dependence on the rotational diffusion of well-defined quantum rods (Qrods) was investigated and characterized. The rotational diffusion region of the Qrods was observed over a time range of less than 10−5 s in a water solution, and the rotational diffusion parameters were extracted using a rotational diffusion model in which the viscosity of the solution media was varied. Our work demonstrated that polarized fluorescence correlation spectroscopy (FCS) is useful for investigating both the rotational and translational diffusion of fluorescent probes.

Keywords

Polarization Spectroscopy Fluorescence Luminescence Correlators 

Notes

Acknowledgements

This work was supported by a grant from the National Research Foundation of Korea, funded by the Korean Government (No. NRF 2012R1A1A20044140) and by the Priority Research Centers Program through the National Pesearch Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093818).

References

  1. 1.
    Lakowicz JR (2006), Principles of Fluorescence Spectroscopy, Third ed., Springer Science + Business Media. Chapter 24Google Scholar
  2. 2.
    Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuation in a reacting system-measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705CrossRefGoogle Scholar
  3. 3.
    Elson EL, Magde D (1974) Fluorescnece correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1CrossRefGoogle Scholar
  4. 4.
    Magde D, Elson E, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29PubMedCrossRefGoogle Scholar
  5. 5.
    Rigler R, Mets Ü, Widengen J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169CrossRefGoogle Scholar
  6. 6.
    Brazda P, Szekeres T, Bravics B, Tóth K, Vámosi G, Nagy L (2011) Live-cell fluorescence correlation spectroscopy dissects the role of coregulator exchange and chromatin binding in retinoic acid receptor mobility. J Cell Sci 124:3631PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Pack C, Saito K, Tamura M, Kinjo M (2006) Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs. Biophys J 91:3921PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ehrenberg M, Rigler R (1974) Rotational Brownian motion and fluorescence intensity fluctuations. Chem Phys 4:390CrossRefGoogle Scholar
  9. 9.
    Kask P, Piksarv P, Pooga M, Mets Ü, Lippmaa E (1989) Separation of the rotational contribution in fluorescence correlation experiments. Biophys J 55:213PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ehrenberg M, Rigler R (1976) Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules. Q Rev Biophys 9:69PubMedCrossRefGoogle Scholar
  11. 11.
    Mets Ü (2001) Fluorescence correlation sepctroscopy. Springer, New YorkGoogle Scholar
  12. 12.
    Kask P, Piksarv P, Mets Ü, Pooga M, Lippmaa E (1987) Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase. Eur Biophys J 14:257PubMedCrossRefGoogle Scholar
  13. 13.
    Alivastos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933CrossRefGoogle Scholar
  14. 14.
    Michalet X, Finaud FF, Bentolia LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wi AM, Gambhir SS, Weiss S (2005) Quantum dot for live cells, in vivo imaging, and diagnostics. Science 307:538PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yao J, Larson DR, Vishwasrao HD, Zipfel WR, Webb WW (2005) Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. PNAS 102:14284PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Liedl T, Keller S, Simmel FC, Radler JO, Parak WJ (2005) Fluorescent nanocrystals as colloidal probes in complex fluids measured by fluorescence correlation spectroscopy. Small 1:997PubMedCrossRefGoogle Scholar
  17. 17.
    Wang S, Querner C, Emmons T, Drndic M, Crouch CH (2006) Fluorescence blinking statistics from CdSe core and core/shell nanorods. J Phys Chem B 110:23221PubMedCrossRefGoogle Scholar
  18. 18.
    Aragon SR, Pecora R (1975) Fluorescence correlation spectroscopy and Brownian rotational diffusion. Biopolymers 14:119CrossRefGoogle Scholar
  19. 19.
    Weiss M, Elsner M, Karberg F, Nilsson T (2004) Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J 87:3518PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ohmachi M, Komori Y, Iwane AH, Fujii F, Jin T, Yanagida T (2012) Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V. PNAS 109:5294PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Deka S, Quarta A, Lupo MG, Falqui A, Boninelli S, Giannini C, Morello G, Giorgi MD, Lanzani G, Spinella C, Cinglani R, Pellegrino T, Manna L (2009) CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes. J Am Chem Soc 131:2948PubMedCrossRefGoogle Scholar
  22. 22.
    Tsay JM, Doose S, Weiss S (2006) Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy. J Am Chem Soc 128:1639PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Cooper A (2005) Biophysical chemistry. Life Science Chapter 4Google Scholar
  24. 24.
    Widengren J, Mets Ü, Rigler R (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Phys Chem 99:13368CrossRefGoogle Scholar
  25. 25.
    Shin HS, Okamoto A, Sako Y, Kim SY, Kim SW, Pack CG (2013) Characterization of the triplet state of hybridization-sensitive DNA probe by using fluorescence correlation spectroscopy. J Phys Chem A 117:27PubMedCrossRefGoogle Scholar
  26. 26.
    de Mello Donegá CM, Bode M, Meijerink A (2006) Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys Rev B 74:085320Google Scholar
  27. 27.
    Pack CG, Song M, Lee E, Hirochima M, Byun K, Kim J, Sako Y (2012) Microenvironments and different nanoparticle dynamics in living cells revealed by a standard nanoparticle. J Control Rel 163:315Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of UlsanUlsanKorea
  2. 2.WPI Immunology Frontier Research CenterOsaka UniversitySuitaJapan
  3. 3.Biohistory Research HallTakatsukiJapan
  4. 4.Department of PhysicsKorea Advanced Institute of Science and TechnologyDaejeonKorea
  5. 5.Cellular Informatics LaboratoryRIKENWakoJapan

Personalised recommendations