Advertisement

Journal of Fluorescence

, Volume 24, Issue 2, pp 625–637 | Cite as

Dynamics of Solvent Controlled ESIPT of π-Expanded Imidazole Derivatives - pH Effect

  • J. Jayabharathi
  • V. Kalaiarasi
  • V. Thanikachalam
  • K. Jayamoorthy
ORIGINAL PAPER

Abstract

A set of π-expanded imidazole derivatives employing excited state intramolecular proton transfer (ESIPT) was designed and synthesized. The relationship between the structure and photophysical properties were thoroughly elucidated by comparing with the analogue blocked with ESIPT functionality. The compound possessing an acidic NH function as part of an intramolecular hydrogen bond system has much higher fluorescence quantum yield and Stokes shift and the π-expansion strongly influences the optical properties. The occurrence of ESIPT for imidazole tosylamide derivatives were less affected by the hydrogen-bonding ability of the solvents compared to the unprotected amine. The low pKa values for the monocation ⇌ neutral equilibrium indicate the presence of intramolecular hydrogen bonding between the amino proton and tertiary nitrogen atom.

Keywords

ESIPT DFT GSIPT TICT Monocation 

Notes

Acknowledgments

One of the authors Prof. J. Jayabharathi is thankful to DST [No. SR/S1/IC-73/2010], DRDO (NRB-213/MAT/10-11) and CSIR (NO 3732/NS-EMRII) for providing funds to this research study.

References

  1. 1.
    Grimmet MR, Katritzky AR, Rees CW (1984) Comprehensive heterocyclic chemistry, vol 5. Pergamon, New York, p 457CrossRefGoogle Scholar
  2. 2.
    Grimmet MR, Katritzky AR, Rees CW, Scriven EFV (1996) Comprehensive heterocyclic chemistry II, vol 3. Pergamon, New York, p 77CrossRefGoogle Scholar
  3. 3.
    Molina P, Tarraga A, Oton F (2012) Org Biomol Chem 10:1711PubMedCrossRefGoogle Scholar
  4. 4.
    Debus H (1858) Liebigs Ann Chem 107:199CrossRefGoogle Scholar
  5. 5.
    Radziszewski B (1882) Chem Ber 15:1493CrossRefGoogle Scholar
  6. 6.
    Hayashi T, Maeda K (1962) Bull Chem Soc Jpn 35:2057CrossRefGoogle Scholar
  7. 7.
    Hayashi T, Maeda K, Shida S, Nakada K (1960) J Chem Phys 32:1568CrossRefGoogle Scholar
  8. 8.
    Zimmerman H, Baumgartel H, Bakke F (1961) Angew Chem 73:808CrossRefGoogle Scholar
  9. 9.
    Blinder SM, Peller MJ, Lord NW, Aamodt KC, Ivanchukov NS (1962) J Chem Phys 36:540CrossRefGoogle Scholar
  10. 10.
    Igarashi H, Igarashi T, Sagawa M, Mori T, Kotani Y, Muroya Y, Katsumura Y, Yamashita T (2007) J Photopolym Sci Technol 20:757CrossRefGoogle Scholar
  11. 11.
    White EH, Harding MJC (1965) Photochem Photobiol 4:1129CrossRefGoogle Scholar
  12. 12.
    Philbrook GE, Maxwell MA, Taylor R, Totter G (1965) Photochem Photobiol 4:1175CrossRefGoogle Scholar
  13. 13.
    Park S, Kwon OH, Kim S, Park S, Choi MG, Cha M, Park SY, Jang DJ (2005) J Am Chem Soc 127:10070PubMedCrossRefGoogle Scholar
  14. 14.
    Park S, Kwon JE, Kim S-H, Seo J, Chung K, Park S-Y, Jang D-J, Medina BM, Gierschner J, Park S-Y (2009) J Am Chem Soc 131:14043PubMedCrossRefGoogle Scholar
  15. 15.
    Kwon JE, Park S-Y (2011) Adv Mater 23:3615–3642PubMedCrossRefGoogle Scholar
  16. 16.
    Fang C, Frontiera NN, Tran R, Mathies RA (2009) Nature 462:200–204PubMedCrossRefGoogle Scholar
  17. 17.
    Douhal A, Lahmani F, Zewail AH (1996) Chem Phys 207:477CrossRefGoogle Scholar
  18. 18.
    Kim JS, Quang DT (2007) Chem Rev 107:3780PubMedCrossRefGoogle Scholar
  19. 19.
    Wang B, Eric V, and Anslyn EV (2011) Chemosensors: Principles, strategies, and applications. Wiley pp. 253–273Google Scholar
  20. 20.
    Roshal AD, Grigorovich AV, Doroshenko AO, Pivovarenko VG (1998) J Phys Chem A 102:5907CrossRefGoogle Scholar
  21. 21.
    Mordzinski A, Grabowska A, Kuhnle W, Krowczynski A (1983) Chem Phys Lett 101:291CrossRefGoogle Scholar
  22. 22.
    McMorrow D, Kasha M (1984) J Phys Chem 88:2235CrossRefGoogle Scholar
  23. 23.
    Martinez ML, Cooper WC, Chou P-T (1992) Chem Phys Lett 193:151CrossRefGoogle Scholar
  24. 24.
    Douhal A, Amat-Guerri V, Acu~na AU (1995) J Phys Chem 99:76CrossRefGoogle Scholar
  25. 25.
    Chou PT, McMorrow D, Aartsma TJ, Kasha M (1984) J Phys Chem 88:4596CrossRefGoogle Scholar
  26. 26.
    Kim S, Park S-Y (2003) Adv Mater 15:1341CrossRefGoogle Scholar
  27. 27.
    Catalan J, del Valle JC, Claramunt RM, Sanz D, Dotor J and Lumin J (1996) 68: 165Google Scholar
  28. 28.
    Parsapour F, Kelley DF (1996) J Phys Chem 100:2791CrossRefGoogle Scholar
  29. 29.
    Sytnik A, Kasha M (1994) Proc Natl Acad Sci U S A 91:8627PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kim S, Seo J, Jung HK, Kim JJ, Park S-Y (2005) Adv Mater 17:2077CrossRefGoogle Scholar
  31. 31.
    Liu B, Wang H, Wang T, Bao Y, Du F, Tian J, Li Q, Bai R (2012) Chem Commun 48:2867CrossRefGoogle Scholar
  32. 32.
    Ding K, Courtney SJ, Strandjord AJ, Flom S, Friedrich D, Barbara PF (1983) J Phys Chem 87:1184–1188CrossRefGoogle Scholar
  33. 33.
    Harvey RG (1997) Polycyclic aromatic compounds. Wiley, New YorkGoogle Scholar
  34. 34.
    Cook AH, Jones DH (1941) J Chem Soc 278–282Google Scholar
  35. 35.
    Richard JP, Amyes TL (2001) Curr Opin Chem Biol 5:626–633PubMedCrossRefGoogle Scholar
  36. 36.
    Stoner-Ma D, Jaye AA, Ronayne KL, Nappa J, Meech SR, Tonge PJ (2008) J Am Chem Soc 130:1227–1235PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Jayabharathi J, Thanikachalam V, Jayamoorthy K (2013) Synthesis of some fluorescent benzimidazole derivatives using cobalt hydroxide (II) as high efficient catalyst—Spectral, physico-chemical studies and ESIPT process. Photochem Photobiol Sci 12:1761–1773PubMedCrossRefGoogle Scholar
  38. 38.
    Jayabharathi J, Thanikachalam V, Jayamoorthy K, Srinivasan N (2013) Synthesis, spectral studies and solvatochromism of some novel benzimidazole derivatives—ESIPT process. Spectrochim Acta, Part A 105:223–228CrossRefGoogle Scholar
  39. 39.
    Anbuselvan C, Jayabharathi J, Thanikachalam V, Tamilselvi G (2012) Physico-chemical studies on some fluorescence sensors: DFT based ESIPT process. Spectrochim Acta, Part A 97:125–130CrossRefGoogle Scholar
  40. 40.
    Jayabharathi J, Thanikachalam V, Jayamoorthy K (2012) Physicochemical studies of chemosensor imidazole derivatives: DFT based ESIPT process. Spectrochim Acta, Part A 89:168–176CrossRefGoogle Scholar
  41. 41.
    Jayabharathi J, Thanikachalam V, Vennila M, Jayamoorthy K (2012) Potential Fluorescent chemosensor based on L-Tryptophan derivative: DFT based ESIPT process. Spectrochim Acta A 95:446–451CrossRefGoogle Scholar
  42. 42.
    Jayabharathi J, Thanikachalam V, Vennila M, Jayamoorthy K (2012) DFT based ESIPT process of luminescent chemosensor: taft and catalan solvatochromism. Spectrochim Acta A 95:589–595CrossRefGoogle Scholar
  43. 43.
    Jayabharathi J, Thanikachalam V, Venkatesh Perumal M, Srinivasan N (2011) A physiochemical studies of azo dyes: DFT based ESIPT process. Spectrochim Acta A 83:200–206CrossRefGoogle Scholar
  44. 44.
    Jayabharathi J, Thanikachalam V, Saravanan K, Venkatesh Perumal M (2011) Spectrofluorometric studies on the binding interaction of bioactive imidazole with bovine serum albumin: A DFT based ESIPT process. Spectrochim Acta A 79:1240–1246CrossRefGoogle Scholar
  45. 45.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian P, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, WallingfordGoogle Scholar
  46. 46.
    Tsai H-HG, Sun H-LS, Tan C-J (2010) TD-DFT study of the excited-state potential energy surfaces of 2-(2′ -Hydroxyphenyl)- benzimidazole and its amino derivatives. J Phys Chem A 114:4065–4079PubMedCrossRefGoogle Scholar
  47. 47.
    Wu Y, Peng X, Fan J, Gao S, Tian M, Zhao J, Sun S (2007) Fluorescence sensing of anions based on inhibition of excited-state intramolecular proton transfer. J Org Chem 72:62–70PubMedCrossRefGoogle Scholar
  48. 48.
    Klymchenko AS, Demchenko AP (2002) J Am Chem Soc 124:12372–12379PubMedCrossRefGoogle Scholar
  49. 49.
    Hsieh C-C, Jiang C-M, Chou P-T (2010) Acc Chem Res 43:1364–1374PubMedCrossRefGoogle Scholar
  50. 50.
    Kakker R, Katoch V (2002) Theoretical study of the excited state intramolecular proton transfer in barbituric acid. Theochem 578:169–175CrossRefGoogle Scholar
  51. 51.
    Park S, Kwon O-H, Kim S, Park S, Choi M-G, Cha M, Park SY, Jang D-J (2005) Imidazole-based excited-state intramolecular proton-transfer materials: synthesis and amplified spontaneous emission from a large single crystal. J Am Chem Soc 127:10070–10074PubMedCrossRefGoogle Scholar
  52. 52.
    Park S, Kwon JE, Kim SH, Seo J, Chung K, Park S-Y, Jang D-J, Medina BM, Gierschner J, Park SY (2009) A white-light-emitting molecule: frustrated energy transfer between constituent emitting centers. J Am Chem Soc 131:14043–14049PubMedCrossRefGoogle Scholar
  53. 53.
    Kim S, Chang DW, Park SY, Kawai H, Nagamura T (2002) Excited-state intramolecular proton transfer in a dendritic macromolecular system: Poly(aryl ether) dendrimers with phototautomerizable quinoline core. Macromolecules 35:2748–2753CrossRefGoogle Scholar
  54. 54.
    Kim S, Zheng Q, He GS, Bharali DJ, Pudavar HE, Baev A, Prasad PN (2006) Aggregation-enhanced fluorescence and two-photon absorption in nanoaggregates of a 9,10-Bis[4′-(4″-aminostyryl)styryl]anthracene derivative. Adv Funct Mater 16:2317–2323CrossRefGoogle Scholar
  55. 55.
    Silva GL, Ediz V, Yaron D, Armitage BA (2007) Experimental and computational investigation of unsymmetrical cyanine dyes: understanding torsionally responsive fluorogenic dyes. J Am Chem Soc 129:5710–5718PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Kim S, Ohulchanskyy TY, Pudavar HE, Pandey RK, Prasad PN (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 129:2669–2675PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Chen J, Xu B, Ouyang X, Tang BZ, Cao Y (2004) J Phys Chem A 108:7522–7526CrossRefGoogle Scholar
  58. 58.
    Li Z, Dong Y, Mi B, Tang Y, Häussler M, Tong H, Dong Y, Lam JWY, Ren Y, Sung HH, Wong KS, Gao P, Williams ID, Kwok HS, Tang BZ (2005) J Phys Chem B 109:10061–10066PubMedCrossRefGoogle Scholar
  59. 59.
    Tong H, Hong Y, Dong Y, Ren Y, Häussler M, Lam JWY, Wong KS, Tang V (2007) J Phys Chem B 111:2000–2007PubMedCrossRefGoogle Scholar
  60. 60.
    Vázquez SR, Rodríguez MCR, Mosquera M, Rodríguez-Prieto F (2007) J Phys Chem A 111:1814–1826PubMedCrossRefGoogle Scholar
  61. 61.
    Paul BK, Mahanta S, Singh RB, Guchhait N (2010) A DFT based theoretical study on the photophysics of 4-hydroxyacridine: Single-water-mediated excited state proton transfer. J Phys Chem A 114:2618–2627PubMedCrossRefGoogle Scholar
  62. 62.
    Wu K-C, Ku P-J, Lin C-S, Shih H-T, Wu F-I, Huang, Lin J-J, Chen I-C, Cheng C-H (2008) The photophysical properties of dipyrenylbenzenes and their application as exceedingly efficient blue emitters for electroluminescent devices. Adv Funct Mater 18:67–75CrossRefGoogle Scholar
  63. 63.
    Dey J, Roberts EL, Warner IM (1998) J Phys Chem A 102:301–305CrossRefGoogle Scholar
  64. 64.
    Saha SK, Dogra SK (1998) J Mol Struct 470:301–311CrossRefGoogle Scholar
  65. 65.
    Purkayastha P, Bera SC, Chattopadhyay N (2000) J Mol Liq 88:33–42CrossRefGoogle Scholar
  66. 66.
    Saha SK, Pandey S, Dogra SK (1995) Indian J Chem 34A:771–777Google Scholar
  67. 67.
    Swaminathan M, Dogra SK (1983) J Am Chem Soc 105:6223–6228CrossRefGoogle Scholar
  68. 68.
    Fayed TA, Ali SS (2003) Spectrosc Lett 36:375–386CrossRefGoogle Scholar
  69. 69.
    Stewart JJP (1989) J Comput Chem 10: 221–264, 209–220Google Scholar
  70. 70.
    Bottcher CJF (1983) Theory of electronic polarization, vol 1. Elsevier, AmsterdamGoogle Scholar
  71. 71.
    Gorse A-D, Pesquer M (1995) J Phys Chem 99:4039–4049CrossRefGoogle Scholar
  72. 72.
    Purkayastha P, Chattopadhyay N (2000) Phys Chem Chem Phys 2:203–210CrossRefGoogle Scholar
  73. 73.
    Purkayastha P, Chattopadhyay N (2003) Int J Mol Sci 4:335–361CrossRefGoogle Scholar
  74. 74.
    Grabowski ZR, Rotkiewicz K, Siemiarczuk A, Cowley DJ, Baumann W (1979) Nouv J Chim 3:443–454Google Scholar
  75. 75.
    Kato S, Amatatsu Y (1990) J Chem Phys 92:7241–7257CrossRefGoogle Scholar
  76. 76.
    Lipinski J, Chojnacki H, Grabowski ZR, Rotkiewicz K (1980) Chem Phys Lett 70:449–453CrossRefGoogle Scholar
  77. 77.
    Marguet S, Mialocq JC, Millie P, Berthier G, Momicchioli F (1992) Chem Phys 160:265–279CrossRefGoogle Scholar
  78. 78.
    LaFemina JP, Duke CB, Paton A (1987) J Chem Phys 87:2151–2157CrossRefGoogle Scholar
  79. 79.
    Steiger D, Ahlbrandt C, Glaser R (1998) J Phys Chem B 102:4257–4260CrossRefGoogle Scholar
  80. 80.
    Nikolaev AE, Myszkiewicz G, Berden G, Meerts WL, Pfanstiel JF, Pratt DW (2005) J Chem Phys 122: 084309-1-10Google Scholar
  81. 81.
    Grabowski ZR, Rotkiewicz K, Retting W (2003) Chem Rev 103:3899–4032PubMedCrossRefGoogle Scholar
  82. 82.
    Amamatsu Y (2000) Theor Chem Acc 103:445–450CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • J. Jayabharathi
    • 1
  • V. Kalaiarasi
    • 1
  • V. Thanikachalam
    • 1
  • K. Jayamoorthy
    • 1
  1. 1.Department of ChemistryAnnamalai UniversityAnnamalainagarIndia

Personalised recommendations