Journal of Fluorescence

, Volume 24, Issue 1, pp 45–55 | Cite as

New Insights on the 7-azaindole Photophysics: The Overlooked Role of Its Non Phototautomerizable Hydrogen Bonded Complexes

  • Carmen Carmona
  • Emilio García-Fernández
  • José Hidalgo
  • Antonio Sánchez-Coronilla
  • Manuel Balón


In this paper we explore the formation and the photophysical properties of the scarcely studied open hydrogen bonded aggregates of 7-Azaindole, 7AI. Thus, we have analyzed the influence that the increase of the 7AI concentration and the decrease of the temperature have on the 7AI photophysics. To help the interpretation of the results, the 7AI-Pyridine system has been used as the model for the analysis of the photophysical properties attributable to the open Npyrrolic − HNpyridinic hydrogen bonded aggregates. Also, the hydrogen bond interactions have been studied by means of the atom in molecule approach from the Bader theory. Experimental and theoretical results support that the formation of open hydrogen bonded aggregates, (−7AI-)n with n ≥ 2 can efficiently compete with that of the profusely studied centro-symmetric cyclic dimer (7AI)2. Moreover, these aggregates suffer a proton-driven electron transfer process that strongly quenches their room temperature fluorescence and, therefore, masks their presence in the 7AI solutions. Therefore, because most of the studies on the 7AI photophysics have been interpreted without considering the existence of such aggregates and, more important, ignoring its quenching process, many conclusions obtained from these studies should be carefully revised.


7-Azaindole Hydrogen bonded aggregates Proton-driven electron transfer 


  1. 1.
    Taylor C, El-Bayoumi A, Kasha M (1969) Excited-state two-proton tautomerism in hydrogen-bonded N-Heterocyclic base pairs. Proc Natl Acad Sci USA 63:253–260CrossRefGoogle Scholar
  2. 2.
    For a recent review see: Sekiya H, Sakota K (2008) Excited-state double-proton transfer in a model DNA base pair: resolution for stepwise and concerted mechanism controversy in the 7-Azaindole dimer revealed by Frequency and time-resolved spectroscopy. Photochem Photobiol C: Photochem Rev 9: 81–91Google Scholar
  3. 3.
    Bulska H, Grabowski A, Pakula B, Sepiol J, Waluk J, Wild UP (1984) Spectroscopy of doubly hydrogen-bonded 7-Azaindole. Reinvestigation of the excited state reaction. J Luminescence 29:65–81CrossRefGoogle Scholar
  4. 4.
    Fuke K, Kaya K (1989) Dynamics of double-proton-transfer reaction in the excited-state model hydrogen-bonded base pairs. J Phys Chem 93:614–621CrossRefGoogle Scholar
  5. 5.
    Catalán J (2002) On the evidence obtained by exciting 7-Azaindole at 320 nm in 10–2 M solutions. J Phys Chem 106:6738–6742CrossRefGoogle Scholar
  6. 6.
    Walmsly J (1981) Self-association of 7-Azaindole in Nonpolar Solvents. J Phys Chem 85:3181–3187CrossRefGoogle Scholar
  7. 7.
    Fedor AM, Korter TK (2006) Terahertz spectroscopy of 7-Azaindole clusters in solution. Chem Phys Lett 429:405–409CrossRefGoogle Scholar
  8. 8.
    Lim H, Park S, Jang D (2011) Excited-state double proton transfer of 7-Azaindole dimers in a low-temperature organic glass. Photochem Photobiol 87:766–771PubMedCrossRefGoogle Scholar
  9. 9.
    García-Fernández E, Carmona C, Muñoz MA, Hidalgo J, Balón M (2012) A photophysical study of the α-Carboline (1-Azacarbazole) aggregation process. Photochem Photobiol 88:277–284PubMedCrossRefGoogle Scholar
  10. 10.
    Bader RFW (1994) Atoms in molecules. A quantum theory. Clarendon, Oxford, 1994Google Scholar
  11. 11.
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRefGoogle Scholar
  12. 12.
    Becke ADJ (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  13. 13.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  14. 14.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Sakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision D.0. Gaussian Inc, PittsburghGoogle Scholar
  15. 15.
    Biegler-König F, Schönbohm J (2002) Update of the AIM2000-Program for atoms in molecules. J Comp Chem 23:1489–1494CrossRefGoogle Scholar
  16. 16.
    Hidalgo J, Sánchez-Coronilla A, Muñoz MA, Carmona C, Balón M (2007) Fluorescence Quenching of Betacarboline (9H-pyrido [3,4-b]indole) induced by intermolecular hydrogen bonding with pyridines. J Luminescence 127:671–677CrossRefGoogle Scholar
  17. 17.
    Hidalgo J, Sánchez-Coronilla A, Balón M, Muñoz MA, Carmona C (2009) Dual emission of temperature-induced betacarboline self-associated hydrogen bond aggregates. Photochem Photobiol Sci 8:414–420PubMedCrossRefGoogle Scholar
  18. 18.
    Martín M, Ikeda N, Okada T, Mataga N (1982) Picosecond laser photolysis studies of deactivation processes of excited hydrogen-bonding complexes. 2. Dibenzocarbazole-pyridine systems. J Phys Chem 86:4148–4156CrossRefGoogle Scholar
  19. 19.
    Miyasaka H, Tabata A, Ojima S, Ikeda N, Mataga N (1993) Femtosecond-picosecond laser photolysis studies on the mechanisms of fluorescence quenching induced by Hydrogen-Bonding Interactions: 1-Pyrenol-pyridine systems. J Phys Chem 97:8222–8228CrossRefGoogle Scholar
  20. 20.
    Herbich J, Kijak M, Zielinska A, Thummel RP, Waluk J (2002) Fluorescence quenching by pyridine and derivatives induced by intermolecular hydrogen bonding to pyrrole-containing heteroaromatics. J Phys Chem 106:2158–2163CrossRefGoogle Scholar
  21. 21.
    Mataga N, Chosrowjan H, Taniguchi S (2005) Ultrafast charge transfer in excited electronic states and investigations into fundamental problems of exciplex chemistry: our early studies and recent developments. J Photochem Photobiol C: Photochem Rev 6:37–79CrossRefGoogle Scholar
  22. 22.
    Sobolewski AL, Domcke W (2007) Computational studies of the photophysics of hydrogen-bonded molecular systems. J Phys Chem 111:11725–11735CrossRefGoogle Scholar
  23. 23.
    Lan Z, Frutos L, Sobolewski A, Domcke W (2008) Photochemistry of hydrogen-bonded aromatic pairs: quantum dynamical calculations for the pyrrole–pyridine complex. Proc Natl Acad Sci USA 105:12707–12712PubMedCrossRefGoogle Scholar
  24. 24.
    Ingham KC, El-Bayoumi MA (1974) Photoinduced double proton transfer in a model hydrogen bonded base pair. Effects of temperature and deuterium substitution. J Am Chem Soc 96:1674–1682CrossRefGoogle Scholar
  25. 25.
    Kwon OH, Zewail AH (2007) Double proton transfer dynamics of model DNA base pairs in the condensed phase. Proc Natl Acad Sci USA 104:8703–8708PubMedCrossRefGoogle Scholar
  26. 26.
    Takeuchi S, Tahara T (1998) Femtosecond ultraviolet–visible fluorescence study of the excited-state proton-transfer reaction of 7-Azaindole dimer. J Phys Chem A 102:7740–7753CrossRefGoogle Scholar
  27. 27.
    Catalán J, Kasha M (2000) Photophysics of 7-Azaindole, Its Doubly-H-Bonded base-pair, and corresponding proton-transfer-tautomer dimeric species, via defining experimental and theoretical results. J Phys Chem A 104:10812–10820CrossRefGoogle Scholar
  28. 28.
    Takeuchi S, Tahara T (2007) Femtosecond ultraviolet–visible fluorescence study of the excited-state proton-transfer reaction of 7-Azaindole dimer. Proc Natl Acad Sci USA 104:5285–5290PubMedCrossRefGoogle Scholar
  29. 29.
    Catalán J (2010) Activation energy of the two-proton phototautomerism in 7-Azaindole dimer and its medium-dependence. J Phys Chem A 114:5666–5673PubMedCrossRefGoogle Scholar
  30. 30.
    Chou P, Liao J, Wei C, Yang C, Yu W, Chou Y (2000) Excited-state double proton transfer on 3-Iodo-7-Azaindole dimer in a single crystal. J Am Chem Soc 122:986–987CrossRefGoogle Scholar
  31. 31.
    Douhal A, Kim SK, Zewail AH (1995) Femtosecond molecular dynamics of tautomerization in model base pairs. Nature 3:260–263CrossRefGoogle Scholar
  32. 32.
    Dufour P, Dartiguenave Y, Dartiguenave M, Dufour N, Lebuis AM, Bélanger-Gariépy F, Beauchamp AL (1990) Crystal structures of 7-Azaindole, an unusual hydrogen-bonded tetramer, and of two of its Methylmercury(II) complexes. Can J Chem 68:193–201CrossRefGoogle Scholar
  33. 33.
    Sánchez-Coronilla A, Balón M, Sánchez-Marcos E, Muñoz MA, Carmona C (2010) A theoretical study of the hydrogen bond donor capability and co-operative effects in the hydrogen bond complexes of the Diaza-aromatic Betacarbolines. Phys Chem Chem Phys 12:5276–5284PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Carmen Carmona
    • 1
  • Emilio García-Fernández
    • 2
  • José Hidalgo
    • 1
  • Antonio Sánchez-Coronilla
    • 3
  • Manuel Balón
    • 1
  1. 1.Departamento de Química FísicaFacultad de Farmacia Universidad de SevillaSevillaSpain
  2. 2.Centro de Química Estructural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Complexo InterdisciplinarLisbonPortugal
  3. 3.Departamento de Química FísicaFacultad de Ciencias, Universidad de CádizPuerto Real, CádizSpain

Personalised recommendations