Journal of Fluorescence

, Volume 23, Issue 3, pp 551–559

A Straightforward Immunoassay Applicable to a Wide Range of Antibodies Based on Surface Enhanced Fluorescence

  • Ruohu Zhang
  • Zhuyuan Wang
  • Chunyuan Song
  • Jing Yang
  • Yiping Cui
ORIGINAL PAPER

Abstract

A straightforward immunoassay based on surface enhanced fluorescence (SEF) has been demonstrated using a fluorescent immune substrate and antibody functionalized-silver nanoparticles. Unlike the conventional SEF-based immunoassay, which usually uses the dye-labeled antibodies and the metallic nanostructured-substrates, the presented immune system does not need the antibodies to be labeled with dye molecules. Thus, this immunoassay can be easily applied to the detection of a wide range of target antigens, which is of great importance for its practical application. The experimental results show that this immunoassay has a good specificity as well as the capacity of quantitative detection. Basically, the surface density of the immuno-adsorbed silver nanoparticles increases with the increased amount of target antigens, resulting in a fluorescence enhancement up to around 7 fold. The dose-responsive performance of the immunoassay has been investigated and the limit of detection (LOD) is 1 ng/mL. Due to its simple preparation method and the wide range of detectable antigens, this presented immunoassay is expected to be helpful for extending the SEF-based application.

Keywords

Surface enhanced fluorescence Surface plasmon resonance Immunoassay Ag nanoparticle Substrate 

References

  1. 1.
    Gosling JP (1990) A decade of development in immunoassay methodology. Clin Chem 36(8):1408–1427PubMedGoogle Scholar
  2. 2.
    Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62. doi:10.1016/j.copbio.2005.01.001 PubMedCrossRefGoogle Scholar
  3. 3.
    Fort E, Gresillon S (2008) Surface enhanced fluorescence. J Phys D Appl Phys 41(1). doi:10.1088/0022-3727/41/1/013001
  4. 4.
    Li RQ, Xu SH, Wang CL, Shao HB, Xu QY, Cui YP (2010) Metal-enhanced fluorescence of CdTe nanocrystals in aqueous solution. ChemPhysChem 11(12):2582–2588. doi:10.1002/cphc.201000239 PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang RH, Wang ZY, Song CY, Yang J, Li J, Sadaf A, Cui YP (2011) Surface-enhanced fluorescence from fluorophore-assembled monolayers by using Ag@SiO2 nanoparticles. ChemPhysChem 12(5):992–998. doi:10.1002/cphc.201000849 PubMedCrossRefGoogle Scholar
  6. 6.
    Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75(3):1139–1152. doi:10.1063/1.442161 CrossRefGoogle Scholar
  7. 7.
    Ruppin R (1982) Decay of an excited molecule near a small metal sphere. J Chem Phys 76(4):1681–1684. doi:10.1063/1.443196 CrossRefGoogle Scholar
  8. 8.
    Das PC, Puri A (2002) Energy flow and fluorescence near a small metal particle. Phys Rev B 65(15). doi:10.1103/PhysRevB.65.155416
  9. 9.
    Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337(2):171–194. doi:10.1016/j.ab.2004.11.026 PubMedCrossRefGoogle Scholar
  10. 10.
    Ming T, Zhao L, Chen HJ, Woo KC, Wang JF, Lin HQ (2011) Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures. Nano Lett 11(6):2296–2303. doi:10.1021/nl200535y PubMedCrossRefGoogle Scholar
  11. 11.
    Matveeva EG, Gryczynski Z, Lakowicz JR (2005) Myoglobin immunoassay based on metal particle-enhanced fluorescence. J Immunol Methods 302(1–2):26–35. doi:10.1016/j.jim.2005.04.020 PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang J, Matveeva E, Gryczynski I, Leonenko Z, Lakowicz JR (2005) Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition. J Phys Chem B 109(16):7969–7975. doi:10.1021/jp0456842 PubMedCrossRefGoogle Scholar
  13. 13.
    Shtoyko T, Matveeva EG, Chang IF, Gryczynski Z, Goldys E, Gryczynski I (2008) Enhanced fluorescent immunoassays on silver fractal-like structures. Anal Chem 80(6):1962–1966. doi:10.1021/ac7019915 PubMedCrossRefGoogle Scholar
  14. 14.
    Matveeva EG, Gryczynski I, Barnett A, Leonenko Z, Lakowicz JR, Gryczynski Z (2007) Metal particle-enhanced fluorescent immunoassays on metal mirrors. Anal Biochem 363(2):239–245. doi:10.1016/j.ab.2007.01.030 PubMedCrossRefGoogle Scholar
  15. 15.
    Nooney R, Clifford A, LeGuevel X, Stranik O, McDonagh C, MacCraith BD (2010) Enhancing the analytical performance of immunoassays that employ metal-enhanced fluorescence. Anal Bioanal Chem 396(3):1127–1134. doi:10.1007/s00216-009-3357-9 PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang R, Wang Z, Song C, Yang J, Sadaf A, Cui Y (2012) Immunoassays based on surface-enhanced fluorescence using gap-plasmon-tunable Ag bilayer nanoparticle films. J Fluoresc 1–7. doi:10.1007/s10895-012-1117-2
  17. 17.
    Coons AH, Creech HJ, Jones RN (1941) Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol Med (New York, NY) 47(2):200–202. doi:10.3181/00379727-47-13084p Google Scholar
  18. 18.
    Vira S, Mekhedov E, Humphrey G, Blank PS (2010) Fluorescent-labeled antibodies: balancing functionality and degree of labeling. Anal Biochem 402(2):146–150. doi:10.1016/j.ab.2010.03.036 PubMedCrossRefGoogle Scholar
  19. 19.
    Lee PC, Meisel D (1982) Adsorption and surface-enhanced raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395. doi:10.1021/j100214a025 CrossRefGoogle Scholar
  20. 20.
    Zhang C, Zhang ZY, Yu BB, Shi JJ, Zhang XR (2002) Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry. Anal Chem 74(1):96–99. doi:10.1021/ac.0103468 PubMedCrossRefGoogle Scholar
  21. 21.
    Chu X, Fu X, Chen K, Shen GL, Yu RQ (2005) An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosens Bioelectron 20(9):1805–1812. doi:10.1016/j.bios.2004.07.012 PubMedCrossRefGoogle Scholar
  22. 22.
    Ling J, Li YF, Huang CZ (2009) Visual sandwich immunoassay system on the basis of plasmon resonance scattering signals of silver nanoparticles. Anal Chem 81(4):1707–1714. doi:10.1021/ac802152b PubMedCrossRefGoogle Scholar
  23. 23.
    Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3(4):485–491. doi:10.1021/nl0340475 CrossRefGoogle Scholar
  24. 24.
    Song W, Mao Z, Liu XJ, Lu Y, Li ZS, Zhao B, Lu LH (2012) Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging. Nanoscale 4(7):2333–2338. doi:10.1039/c2nr12030e PubMedCrossRefGoogle Scholar
  25. 25.
    Kuhn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97(1). doi:10.1103/PhysRevLett.97.017402
  26. 26.
    Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7(2):496–501. doi:10.1021/nl062901x PubMedCrossRefGoogle Scholar
  27. 27.
    Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7(3):690–696. doi:10.1021/nl062795z PubMedCrossRefGoogle Scholar
  28. 28.
    Munechika K, Chen Y, Tillack AF, Kulkarni AP, Plante IJL, Munro AM, Ginger DS (2010) Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms. Nano Lett 10(7):2598–2603. doi:10.1021/nl101281a PubMedCrossRefGoogle Scholar
  29. 29.
    Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4(2):107–113. doi:10.1007/s11468-009-9080-8 CrossRefGoogle Scholar
  30. 30.
    Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3(9):601–605. doi:10.1038/nmat1198 PubMedCrossRefGoogle Scholar
  31. 31.
    Kwon MK, Kim JY, Kim BH, Park IK, Cho CY, Byeon CC, Park SJ (2008) Surface-plasmon-enhanced light-emitting diodes. Adv Mater 20(7):1253–1257. doi:10.1002/adma.200701130 CrossRefGoogle Scholar
  32. 32.
    Aslan K, Geddes CD (2009) Metal-enhanced chemiluminescence: advanced chemiluminescence concepts for the 21st century. Chem Soc Rev 38(9):2556–2564. doi:10.1039/b807498b PubMedCrossRefGoogle Scholar
  33. 33.
    Chen YC, Munechika K, Jen-La Plante I, Munro AM, Skrabalak SE, Xia YN, Ginger DS (2008) Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl Phys Lett 93(5). doi:10.1063/1.2956391
  34. 34.
    Schietinger S, Barth M, Alchele T, Benson O (2009) Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. Nano Lett 9(4):1694–1698. doi:10.1021/nl900384c PubMedCrossRefGoogle Scholar
  35. 35.
    Lang XY, Guan PF, Zhang L, Fujita T, Chen MW (2010) Size dependence of molecular fluorescence enhancement of nanoporous gold. Appl Phys Lett 96(7). doi:10.1063/1.3323104
  36. 36.
    Li H, Qiang WB, Vuki M, Xu DK, Chen HY (2011) Fluorescence enhancement of silver nanoparticle hybrid probes and ultrasensitive detection of IgE. Anal Chem 83(23):8945–8952. doi:10.1021/ac201574s PubMedCrossRefGoogle Scholar
  37. 37.
    Liu NG, Prall BS, Klimov VI (2006) Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor–metal interactions. J Am Chem Soc 128(48):15362–15363. doi:10.1021/ja0660296 PubMedCrossRefGoogle Scholar
  38. 38.
    Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 3(3):744–752. doi:10.1021/nn900001q PubMedCrossRefGoogle Scholar
  39. 39.
    Ming T, Zhao L, Yang Z, Chen HJ, Sun LD, Wang JF, Yan CH (2009) Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett 9(11):3896–3903. doi:10.1021/nl902095q PubMedCrossRefGoogle Scholar
  40. 40.
    Nakamura T, Hayashi S (2005) Enhancement of dye fluorescence by gold nanoparticles: analysis of particle size dependence. Jpn J Appl Phys 44(9A):6833–6837. doi:10.1143/jjap.44.6833 CrossRefGoogle Scholar
  41. 41.
    Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2008) Single-molecule studies on fluorescently labeled silver particles: effects of particle size. J Phys Chem C 112(1):18–26. doi:10.1021/jp074938r CrossRefGoogle Scholar
  42. 42.
    Aslan K, Holley P, Geddes CD (2006) Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) with silver colloids in 96-well plates: application to ultra fast and sensitive immunoassays, high throughput screening and drug discovery. J Immunol Methods 312(1–2):137–147. doi:10.1016/j.jim.2006.03.009 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ruohu Zhang
    • 1
  • Zhuyuan Wang
    • 1
  • Chunyuan Song
    • 1
  • Jing Yang
    • 1
  • Yiping Cui
    • 1
  1. 1.Advanced Photonics CenterSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations