Journal of Fluorescence

, Volume 23, Issue 3, pp 487–494 | Cite as

The pH Probe CypHer™5E is Effectively Quenched by FM Dyes

  • Oliver Welzel
  • Kristina Loy
  • Carsten H. Tischbirek
  • Alina Tabor
  • Peter Gmeiner
  • Johannes Kornhuber
  • Teja W. Groemer


Concurrent imaging of spectrally distinct fluorescence probes has become an important method for live-cell microscopy experiments in many biological disciplines. The technique enables the identification of a multitude of causal relationships. However, interactions between fluorescent dyes beyond an obvious overlap of their fluorescent spectra are often neglected. Here we present the effects of the well-established fluorescent dyes FM®2-10 or FM®1-43 on the recently introduced pH-dependent probe CypHer™5E. Spectrophotometry as well as live-cell fluorescence microscopy revealed that both FM dyes are effective quenchers of CypHer™5E. Control experiments indicated that this effect is reversible and not due to bleaching. We conclude that, in general, parallel measurements of both dyes are possible, with low FM dye concentrations. Nevertheless, our results implicate that special care has to be taken in such dual colour experiments especially when analysing dynamic CypHer™5E signals in live-cell microscopy.


FM dye CypHer™5E Fluorescence microscopy Synaptic vesicles Hippocampal neurons 


FM® 2-10

N-(3-Triethylammoniumpropyl)-4-(4-(Diethylamino) Styryl) Pyridinium Dibromide

FM® 1-43

N-(3-Triethylammoniumpropyl)-4-(4-(Dibutylamino) Styryl) Pyridinium Dibromide


Green fluorescent protein




Critical micelle concentration



We thank Katrin Ebert for excellent technical assistance.

Supplementary material

10895_2013_1164_MOESM1_ESM.docx (117 kb)
Fig. S1 Dye structure and corresponding spectra of the styryl dye FM®1-43. (A) Dye structure of FM®1-43 [14]. (B) Excitation (dashed) and emission spectra of the dye FM®1-43 for two different pH values. Typical excitation and emission filters are depicted. (DOCX 116 kb)
10895_2013_1164_MOESM2_ESM.docx (111 kb)
Fig. S2 Fluorescence emission spectra of CypHer™5E at pH = 5.3 for multiple measurements. Emission spectra of CypHer™5E at pH = 5.3 for 12 consecutive measurements (A) and corresponding mean and standard deviation (B). (DOCX 110 kb)
10895_2013_1164_MOESM3_ESM.docx (117 kb)
Fig. S3 Stern–Volmer plots. The term \( \frac{{{F_0}}}{F}-1 \) is plotted versus the respective FM dye concentration, where F 0 is CypHer™5E fluorescence is absence of the quencher (FM®2-10 or FM®1-43) and F in presence of the quencher. Data was taken from the spectrophotometric and in vitro experiments, respectively. (A) In FM®2-10 experiments the Stern-Volmer constant for the spectrophotometric data is 0.0058 μM−1 with a coefficient of determination R2 of 0.94 and in the in vitro experiments 0.0032 μM−1 (R2 = 0.99). (B) In FM®1-43 experiments the Stern–Volmer constant for the spectrophotometric data is 0.0196 μM−1 (R2 = 0.99) and in the in vitro experiments 0.0111 μM−1 (R2 = 0.97). (DOCX 117 kb)


  1. 1.
    Klingauf J, Kavalali ET, Tsien RW (1998) Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394(6693):581–585. doi: 10.1038/29079 PubMedCrossRefGoogle Scholar
  2. 2.
    Groemer TW, Klingauf J (2007) Synaptic vesicles recycling spontaneously and during activity belong to the same vesicle pool. Nat Neurosci 10(2):145–147. doi: 10.1038/nn1831 PubMedCrossRefGoogle Scholar
  3. 3.
    Gaffield MA, Betz WJ (2006) Imaging synaptic vesicle exocytosis and endocytosis with FM dyes. Nat Protoc 1(6):2916–2921. doi: 10.1038/nprot.2006.476 PubMedCrossRefGoogle Scholar
  4. 4.
    Chen X, Barg S, Almers W (2008) Release of the styryl dyes from single synaptic vesicles in hippocampal neurons. J Neurosci 28(8):1894–1903. doi: 10.1523/JNEUROSCI.4518-07.2008 PubMedCrossRefGoogle Scholar
  5. 5.
    Ryan TA, Reuter H, Smith SJ (1997) Optical detection of a quantal presynaptic membrane turnover. Nature 388(6641):478–482. doi: 10.1038/41335 PubMedCrossRefGoogle Scholar
  6. 6.
    Welzel O, Henkel AW, Stroebel AM, Jung J, Tischbirek CH, Ebert K, Kornhuber J, Rizzoli SO, Groemer TW (2011) Systematic heterogeneity of fractional vesicle pool sizes and release rates of hippocampal synapses. Biophys J 100(3):593–601. doi: 10.1016/j.bpj.2010.12.3706 PubMedCrossRefGoogle Scholar
  7. 7.
    Welzel O, Tischbirek CH, Kornhuber J, Groemer TW (2012) Pool-independent labelling of synaptic vesicle exocytosis with single vesicle resolution in rat hippocampal neurons. J Neurosci Methods 205(2):258–264. doi: 10.1016/j.jneumeth.2012.01.011 PubMedCrossRefGoogle Scholar
  8. 8.
    Murthy VN, Stevens CF (1999) Reversal of synaptic vesicle docking at central synapses. Nat Neurosci 2(6):503–507. doi: 10.1038/9149 PubMedCrossRefGoogle Scholar
  9. 9.
    Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6(1):57–69. doi: 10.1038/nrn1583 PubMedCrossRefGoogle Scholar
  10. 10.
    Ryan TA, Reuter H, Wendland B, Schweizer FE, Tsien RW, Smith SJ (1993) The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11(4):713–724PubMedCrossRefGoogle Scholar
  11. 11.
    Ryan TA, Smith SJ, Reuter H (1996) The timing of synaptic vesicle endocytosis. Proc Natl Acad Sci U S A 93(11):5567–5571PubMedCrossRefGoogle Scholar
  12. 12.
    Henkel AW, Welzel O, Groemer TW, Tripal P, Rotter A, Kornhuber J (2010) Fluoxetine prevents stimulation-dependent fatigue of synaptic vesicle exocytosis in hippocampal neurons. J Neurochem 114(3):697–705. doi: 10.1111/j.1471-4159.2010.06795.x PubMedCrossRefGoogle Scholar
  13. 13.
    Micheva KD, Taylor CP, Smith SJ (2006) Pregabalin reduces the release of synaptic vesicles from cultured hippocampal neurons. Mol Pharmacol 70(2):467–476. doi: 10.1124/mol.106.023309 PubMedCrossRefGoogle Scholar
  14. 14.
    Wu Y, Yeh FL, Mao F, Chapman ER (2009) Biophysical characterization of styryl dye-membrane interactions. Biophys J 97(1):101–109. doi: 10.1016/j.bpj.2009.04.028 PubMedCrossRefGoogle Scholar
  15. 15.
    Adie EJ, Kalinka S, Smith L, Francis MJ, Marenghi A, Cooper ME, Briggs M, Michael NP, Milligan G, Game S (2002) A pH-sensitive fluor, CypHer 5, used to monitor agonist-induced G protein-coupled receptor internalization in live cells. BioTechniques 33(5):1152–1154, 1156–1157Google Scholar
  16. 16.
    Briggs MS, Burns DD, Cooper ME, Gregory SJ (2000) A pH sensitive fluorescent cyanine dye for biological applications. Chem Commun 23:2323–2324CrossRefGoogle Scholar
  17. 17.
    Martens H, Weston MC, Boulland JL, Gronborg M, Grosche J, Kacza J, Hoffmann A, Matteoli M, Takamori S, Harkany T, Chaudhry FA, Rosenmund C, Erck C, Jahn R, Hartig W (2008) Unique luminal localization of VGAT-C terminus allows for selective labeling of active cortical GABAergic synapses. J Neurosci 28(49):13125–13131. doi: 10.1523/JNEUROSCI.3887-08.2008 PubMedCrossRefGoogle Scholar
  18. 18.
    Hua Y, Sinha R, Martineau M, Kahms M, Klingauf J (2010) A common origin of synaptic vesicles undergoing evoked and spontaneous fusion. Nat Neurosci 13(12):1451–1453. doi: 10.1038/nn.2695 PubMedCrossRefGoogle Scholar
  19. 19.
    Hua Y, Sinha R, Thiel CS, Schmidt R, Huve J, Martens H, Hell SW, Egner A, Klingauf J (2011) A readily retrievable pool of synaptic vesicles. Nat Neurosci 14(7):833–839. doi: 10.1038/nn.2838 PubMedCrossRefGoogle Scholar
  20. 20.
    Ratnayaka A, Marra V, Branco T, Staras K (2011) Extrasynaptic vesicle recycling in mature hippocampal neurons. Nat Commun 2:531. doi: 10.1038/ncomms1534 PubMedCrossRefGoogle Scholar
  21. 21.
    Welzel O, Tischbirek CH, Jung J, Kohler EM, Svetlitchny A, Henkel AW, Kornhuber J, Groemer TW (2010) Synapse clusters are preferentially formed by synapses with large recycling pool sizes. PLoS One 5(10):e13514. doi: 10.1371/journal.pone.0013514 PubMedCrossRefGoogle Scholar
  22. 22.
    Li H, Foss SM, Dobryy YL, Park CK, Hires SA, Shaner NC, Tsien RY, Osborne LC, Voglmaier SM (2011) Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front Mol Neurosci 4:34. doi: 10.3389/fnmol.2011.00034 PubMedCrossRefGoogle Scholar
  23. 23.
    Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195. doi: 10.1038/28190 PubMedCrossRefGoogle Scholar
  24. 24.
    Sankaranarayanan S, De Angelis D, Rothman JE, Ryan TA (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79(4):2199–2208. doi: 10.1016/S0006-3495(00)76468-X PubMedCrossRefGoogle Scholar
  25. 25.
    Del Castillo J, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124(3):560–573Google Scholar
  26. 26.
    Balaji J, Ryan TA (2007) Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci U S A 104(51):20576–20581. doi: 10.1073/pnas.0707574105 PubMedCrossRefGoogle Scholar
  27. 27.
    Pyle JL, Kavalali ET, Piedras-Renteria ES, Tsien RW (2000) Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28(1):221–231PubMedCrossRefGoogle Scholar
  28. 28.
    Ryan TA, Smith SJ (1995) Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14(5):983–989PubMedCrossRefGoogle Scholar
  29. 29.
    Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151(2):182–195. doi: 10.1016/j.jsb.2005.06.002 PubMedCrossRefGoogle Scholar
  30. 30.
    Denker A, Bethani I, Krohnert K, Korber C, Horstmann H, Wilhelm BG, Barysch SV, Kuner T, Neher E, Rizzoli SO (2011) A small pool of vesicles maintains synaptic activity in vivo. Proc Natl Acad Sci U S A 108(41):17177–17182. doi: 10.1073/pnas.1112688108 PubMedCrossRefGoogle Scholar
  31. 31.
    Henkel AW, Lubke J, Betz WJ (1996) FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc Natl Acad Sci U S A 93(5):1918–1923PubMedCrossRefGoogle Scholar
  32. 32.
    Tanford C (1978) The hydrophobic effect and the organization of living matter. Science 200(4345):1012–1018PubMedCrossRefGoogle Scholar
  33. 33.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Springer Science and Business MediaGoogle Scholar
  34. 34.
    Neugebauer JM (1990) Detergents: an overview. Methods Enzymol 182:239–253PubMedCrossRefGoogle Scholar
  35. 35.
    Chattopadhyay A, Harikumar KG (1996) Dependence of critical micelle concentration of a zwitterionic detergent on ionic strength: implications in receptor solubilization. FEBS Lett 391(1–2):199–202PubMedCrossRefGoogle Scholar
  36. 36.
    Betz WJ, Mao F, Smith CB (1996) Imaging exocytosis and endocytosis. Curr Opin Neurobiol 6(3):365–371PubMedCrossRefGoogle Scholar
  37. 37.
    Nelson N (1992) Structure and function of V-ATPases in endocytic and secretory organelles. J Exp Biol 172:149–153PubMedGoogle Scholar
  38. 38.
    Darcy KJ, Staras K, Collinson LM, Goda Y (2006) Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci 9(3):315–321. doi: 10.1038/nn1640 PubMedCrossRefGoogle Scholar
  39. 39.
    Smillie KJ, Cousin MA (2012) Akt/PKB controls the activity-dependent bulk endocytosis of synaptic vesicles. Traffic. doi: 10.1111/j.1600-0854.2012.01365.x
  40. 40.
    Harata NC, Choi S, Pyle JL, Aravanis AM, Tsien RW (2006) Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron 49(2):243–256. doi: 10.1016/j.neuron.2005.12.018 PubMedCrossRefGoogle Scholar
  41. 41.
    Opazo F, Punge A, Buckers J, Hoopmann P, Kastrup L, Hell SW, Rizzoli SO (2010) Limited intermixing of synaptic vesicle components upon vesicle recycling. Traffic 11(6):800–812. doi: 10.1111/j.1600-0854.2010.01058.x PubMedCrossRefGoogle Scholar
  42. 42.
    Wienisch M, Klingauf J (2006) Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat Neurosci 9(8):1019–1027. doi: 10.1038/nn1739 PubMedCrossRefGoogle Scholar
  43. 43.
    Zhu Y, Stevens CF (2008) Probing synaptic vesicle fusion by altering mechanical properties of the neuronal surface membrane. Proc Natl Acad Sci U S A 105(46):18018–18022. doi: 10.1073/pnas.0809714105 PubMedCrossRefGoogle Scholar
  44. 44.
    Stern O, Volmer M (1919) Über die abklingungszeit der fluoreszenz. Phys Z 20:183–188Google Scholar
  45. 45.
    Doose S, Neuweiler H, Sauer M (2005) A close look at fluorescence quenching of organic dyes by tryptophan. ChemPhysChem 6(11):2277–2285. doi: 10.1002/cphc.200500191 PubMedCrossRefGoogle Scholar
  46. 46.
    Doose S, Neuweiler H, Sauer M (2009) Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem 10(9–10):1389–1398. doi: 10.1002/cphc.200900238 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Oliver Welzel
    • 1
  • Kristina Loy
    • 1
  • Carsten H. Tischbirek
    • 1
  • Alina Tabor
    • 2
  • Peter Gmeiner
    • 2
  • Johannes Kornhuber
    • 1
  • Teja W. Groemer
    • 1
  1. 1.Department of Psychiatry and PsychotherapyFriedrich-Alexander-University of Erlangen-NurembergErlangenGermany
  2. 2.Department of Chemistry and Pharmacy, Emil Fischer CenterFriedrich-Alexander-University of Erlangen-NurembergErlangenGermany

Personalised recommendations