Advertisement

Journal of Fluorescence

, Volume 22, Issue 4, pp 1047–1053 | Cite as

Photosensitization of Imidazole Derivative by ZnO Nanoparticle

  • Chockalingam Karunakaran
  • Jayaraman Jayabharathi
  • Kumar Brindha Devi
  • Karunamoorthy Jayamoorthy
ORIGINAL PAPER

Abstract

A sensitive imidazole based fluorescent sensor like 4, 5-diphenyl-2(E)-styryl-1H-imidazole, for ZnO has been designed and synthesized via simple steps. The absorption, fluorescence, SEM, EDX and IR studies indicate that imidazole derivative is bound on the surface of ZnO semiconductor. Based on photo-induced electron transfer (PET) mechanism, fluorescent enhancement has been explained and apparent binding constant has been calculated. Ligand adsorption on ZnO nanoparticle lowers of the HOMO and LUMO energy levels of imidazole derivative and the chemical affinity between the nitrogen atom of the imidazole and zinc ion on the surface of the nano oxide may be a reason for strong adsorption of the ligand on nanoparticle. The electron injection from photo excited imidazole derivative to the ZnO conduction band (S*→S+ + e CB ) accounts for the enhanced fluorescence.

Keywords

Imidazole Nanoparticles Electron transfer Enhancement Association constant 

Notes

Acknowledgment

One of the authors Dr. J. Jayabharathi, Associate Professor, Department of Chemistry, Annamalai University is thankful to Department of Science and Technology [No. SR/S1/IC-73/2010] and University Grants Commission [F. No. 36-21/2008 (SR)] for providing funds for this research study.

References

  1. 1.
    Colvin VL, Schlamp MC, Alivisators AP (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357CrossRefGoogle Scholar
  2. 2.
    Moller BM, Woggon U, Artemyev MV (2005) Coupled-resonator optical waveguides doped with nanocrystals. Opt Lett 30:2116–2118PubMedCrossRefGoogle Scholar
  3. 3.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016PubMedCrossRefGoogle Scholar
  4. 4.
    Wu X, Liu H, Liu J, Haley K, Treadway J, Larson J, Ge N, Peals F, Bruchez M (2002) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46PubMedCrossRefGoogle Scholar
  5. 5.
    Gao X, Cui Y, Levenson RM, Chung L, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976PubMedCrossRefGoogle Scholar
  6. 6.
    Bravner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. NanoLett 6:866–870CrossRefGoogle Scholar
  7. 7.
    Wang X, Kong X, Yu Y, Zhang H (2007) Semiconductor nanocrystals as fluorescent biological labels. J Phys Chem C 111:3836–3841CrossRefGoogle Scholar
  8. 8.
    Hu W, Liu Y, Yang H, Zhou X, Li CM (2011) ZnO nanorods-enhanced fluorescence for sensitive microarray detection of cancers in serum without additional reporter-amplification. Biosens Bioelectron 26:3683–3687PubMedCrossRefGoogle Scholar
  9. 9.
    Lefebvre JF, Leclercq D, Gisselbrecht JP, Richeter S (2010) Synthesis, characterization, and electronic properties of metalloporphyrins annulated to exocyclic imidazole and imidazolium rings. Eur J Org Chem 2010:1912–1920CrossRefGoogle Scholar
  10. 10.
    Shi L, Su J, Wu Z (2011) First-principles studies on the efficient photoluminescent iridium(III) complexes with C^N=N ligands. Inorg Chem 50:5477–5484PubMedCrossRefGoogle Scholar
  11. 11.
    Adachi M, Nagao M (2001) Design of near-infrared dyes Based on π-conjugation system extension 2. Theoretical elucidation of framework extended derivatives of perylene chromophore. Chem Mater 13:662–669CrossRefGoogle Scholar
  12. 12.
    Yan YN, Pan YL, Song HC (2010) The synthesis and optical properties of novel 1,3,4-oxadiazole derivatives containing an imidazole unit. Dyes Pigments 86:249–258CrossRefGoogle Scholar
  13. 13.
    Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549PubMedCrossRefGoogle Scholar
  14. 14.
    Komatsu K, Urano Y, Kojima H, Nagano T (2007) Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. J Am Chem Soc 129:13447–13454PubMedCrossRefGoogle Scholar
  15. 15.
    Qian F, Zhang C, Zhang Y, He W, Gao X, Hu P, Guo Z (2009) Visible light excitable Zn(2+) fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application. J Am Chem Soc 131:1460–1468PubMedCrossRefGoogle Scholar
  16. 16.
    Li Z, Yu M, Zhang L, Yu M, Liu J, Wei L, Zhang H (2010) A “switching on” fluorescent chemodosimeter of selectivity to Zn2+ and its application to MCF-7 cells. Chem Commun 46:7169–7171CrossRefGoogle Scholar
  17. 17.
    Xu Z, Baek KH, Kim HN, Cui J, Qian X, Spring DR, Shin I, Yoon J (2010) Zn2+-triggered amide tautomerization produces a highly Zn2+-selective, cell-permeable, and ratiometric fluorescent sensor. J Am Chem Soc 132:601–610PubMedCrossRefGoogle Scholar
  18. 18.
    Moon WJ, Yu JH, Choi GM (2001) Selective CO gas detection of SnO2–Zn2SnO4 composite gas sensor. Sensor Actuator B 80:21–27CrossRefGoogle Scholar
  19. 19.
    Jayabharathi J, Thanikachalam V, Saravanan K, Srinivasan N (2011) Iridium(III) complexes with orthometalated phenylimidazole ligands subtle turning of emission to the saturated green colour. J Fluoresc 21:507–519PubMedCrossRefGoogle Scholar
  20. 20.
    Kathiravan A, Chandramohan M, Renganathan R, Sekar S (2009) Photoinduced electron transfer from phycoerythrin to colloidal metal semiconductor nanoparticles. Spectrochim Acta A 72:496–501CrossRefGoogle Scholar
  21. 21.
    Kathiravan A, Renganathan R (2008) An investigation on electron transfer quenching of zinc(II) meso-tetraphenylporphyrin (ZnTPP) by colloidal TiO2. Spectrochim Acta A 71:1106–1109CrossRefGoogle Scholar
  22. 22.
    Kathiravan A, Anbazhagan V, Asha Jhonsi M, Renganathan R (2008) Fluorescence quenching of meso-tetrakis(4-sulfonatophenyl)porphyrins by colloidal TiO2. Spectrochim Acta A 70:615–618CrossRefGoogle Scholar
  23. 23.
    Kathiravan A, Renganathan R (2009) Photoinduced interactions between colloidal TiO2 nanoparticles and calf thymus-DNA. Polyhedron 28:1374–1378CrossRefGoogle Scholar
  24. 24.
    Kathiravan A, Renganathan R (2009) Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins. J Colloid Interface Sci 331:401–407PubMedCrossRefGoogle Scholar
  25. 25.
    Asha Jhonsi M, Kathiravan A, Renganathan R (2009) An investigation on fluorescence quenching of certain porphyrins by colloidal CdS. J Lumin 129:854–860CrossRefGoogle Scholar
  26. 26.
    Asha Jhonsi M, Kathiravan A, Renganathan R (2009) Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloid Surface B 72:167–172CrossRefGoogle Scholar
  27. 27.
    Kathiravan A, Renganathan R (2008) Interaction of colloidal TiO2 with bovine serum albumin: a fluorescence quenching study. Colloid Surface A 324:176–180CrossRefGoogle Scholar
  28. 28.
    Asha Jhonsi M, Kathiravan A, Renganathan R (2009) Photoinduced interaction between xanthenes dyes and colloidal CdS nanoparticles. J Mol Struct 921:279–284CrossRefGoogle Scholar
  29. 29.
    Chen JM, Hou JH, Li YF, Zhou XW, Zhang JB, Li XP, Xiao XR, Lin Y (2009) Fluorescence and sensitization performance of phenylene-vinylene-substituted polythiophene. Chin Sci Bull 54:1669–1676CrossRefGoogle Scholar
  30. 30.
    Kathiravan A, Paramaguru G, Renganathan R (2009) Study on the binding of colloidal zinc oxide nanoparticle with bovine serum albumin. J Mol Struct 921:279–284CrossRefGoogle Scholar
  31. 31.
    Karunakaran C, Anilkumar P, Gomathisankar P (2011) Photoproduction of iodine with nanoparticulate semiconductors and insulators. Chem Cent J 123:5–31Google Scholar
  32. 32.
    Gayathri P, Jayabharathi J, Srinivasan N, Thiruvalluvar A, Butcher RJ (2010) 2-(4-Fluorophenyl)-1,4,5-triphenyl-1H-imidazole. Acta Crystallogr E 66:o1703CrossRefGoogle Scholar
  33. 33.
    Jayabharathi J, Thanikachalam V, Venkatesh Perumal M, Saravanan K (2011) Displacement reaction using ibuprofen in a mixture of bioactive imidazole derivative and bovine serum albumin—a fluorescence quenching study. J Fluoresc. doi: 10.1007/s10895-011-0878-3
  34. 34.
    Jayabharathi J, Thanikachalam V, Venkatesh Perumal M, Srinivasan N (2011) Fluorescence resonance energy transfer from a bio-active imidazole derivative 2-(1-phenyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol to a bioactive indoloquinolizine system. Spectrochim Acta A 79:236–244CrossRefGoogle Scholar
  35. 35.
    Jayabharathi J, Thanikachalam V, Saravanan K, Srinivasan N, Venkatesh Perumal M (2011) Physiochemical properties of organic nonlinear optical crystal from combined experimental and theoretical studies. Spectrochim Acta A 78:794–802CrossRefGoogle Scholar
  36. 36.
    Jayabharathi J, Thanikachalam V, Jayamoorthy K, Venkatesh Perumal M (2011) A physiochemical study of excited state intramolecular proton transfer process: luminescent chemosensor by spectroscopic investigation supported by ab initio calculations. Spectrochim Acta A 79:6–16CrossRefGoogle Scholar
  37. 37.
    Jayabharathi J, Thanikachalam V, Srinivasan N, Jayamoorthy K, Venkatesh Perumal M (2011) An intramolecular charge transfer fluorescent probe: synthesis, structure and selective fluorescent sensing of Cu+2. J Fluoresc 21:1813–1823PubMedCrossRefGoogle Scholar
  38. 38.
    Jayabharathi J, Thanikachalam V, Saravanan K (2009) Effect of substituents on the photoluminescence performance of Ir(III) complexes: synthesis, electrochemistry and photophysical properties. J Photochem Photobiol A Chem 208:13–20CrossRefGoogle Scholar
  39. 39.
    Jayabharathi J, Thanikachalam V, Brindha Devi K, Venkatesh Perumal M (2011) Binding interaction of bioactive imidazole with bovine serum albumin-A mechanistic investigation. Spectrochim Acta A. doi: 10.1016/j.saa.2011.08.081
  40. 40.
    Jayabharathi J, Thanikachalam V, Brindha Devi K, Srinivasan N (2011) Physicochemical studies of some novel Y-shaped imidazole derivatives—a sensitive chemisensor. Spectrochim Acta A 82:513–520CrossRefGoogle Scholar
  41. 41.
    Saravanan K, Srinivasan N, Thanikachalam V, Jayabharathi J (2010) Synthesis and photophysics of some novel imidazole derivatives used as sensitive fluorescent chemisensors. J Fluoresc 21:65–80PubMedCrossRefGoogle Scholar
  42. 42.
    Hou J, Huo L, He C et al (2006) Synthesis and absorption spectra of poly(3- (phenylenevinyl)thiophene) with conjugated side chains. Macromolecules 39(2):594–603CrossRefGoogle Scholar
  43. 43.
    Cheng HM, Hsich WF (2010) Electron transfer properties of organic dye-sensitized solar cells based on indoline sensitizers with ZnO nanoparticles. Nanotech 21:485202CrossRefGoogle Scholar
  44. 44.
    Lin B, Fu Z, Ji Y (1991) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 79:943–945CrossRefGoogle Scholar
  45. 45.
    Cyril L, Earl JK, Sperry WM (196) Biochemists handbook. E. & F. N. Spon, London, pp 84–88Google Scholar
  46. 46.
    Chen GZ, Huang XZ, Xu JG, Wang ZB, Zheng ZZ (1990) Method of fluorescent analysis (chapter 4), 2nd edn. Science Press, Beijing, p 126Google Scholar
  47. 47.
    He WY, Li Y, Xue CX, Hu ZD, Chen XG, Sheng FL (2005) Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg Med Chem 13:1837–1845PubMedCrossRefGoogle Scholar
  48. 48.
    Kavarnos GJ, Turro NJ (1986) Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chem Rev 86:401–449CrossRefGoogle Scholar
  49. 49.
    Parret S, Savary FM, Fouassier JP, Ramamurthy P (1994) Spin–orbit-coupling-induced triplet formation of triphenylpyrylium ion: a flash photolysis study. J Photochem Photobiol A 83:205–209CrossRefGoogle Scholar
  50. 50.
    Kikuchi K, Niwa T, Takahashi Y, Ikeda H, Miyashi T (1993) Quenching mechanism in a highly exothermic region of the Rehm-Weller relationship for electron-transfer fluorescence quenching. J Phys Chem 97:5070–5073CrossRefGoogle Scholar
  51. 51.
    Nath S, Pal H, Palit DK, Sapre AV, Mittal JP (1998) Steady-state and time-resolved studies on photoinduced interaction of phenothiazine and 10-methylphenothiazine with chloroalkanes. J Phys Chem A 102:5822–5830CrossRefGoogle Scholar
  52. 52.
    Domenech J, Prieto A (1986) Stability of ZnO particles in aqueous suspensions under UV illumination. J Phys Chem 90:1123–1126CrossRefGoogle Scholar
  53. 53.
    Joshi C, Kumar K, Rai SB (2011) Effect of ZnO as modifier on up and downconversion properties of Ho3+/Yb3+ doped tellurite glasses. Opt Commun 284:4584–4587CrossRefGoogle Scholar
  54. 54.
    Kathiravan A, Renganathan R (2009) Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment. J Colloid Interface Sci 335:196–202PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Chockalingam Karunakaran
    • 1
  • Jayaraman Jayabharathi
    • 1
  • Kumar Brindha Devi
    • 1
  • Karunamoorthy Jayamoorthy
    • 1
  1. 1.Department of ChemistryAnnamalai UniversityAnnamalainagarIndia

Personalised recommendations