Journal of Fluorescence

, Volume 22, Issue 3, pp 945–951 | Cite as

A Fluorescence Turn-on Sensor for Hg2+ with a Simple Receptor Available in Sulphide-Rich Environments

  • Jiangli Fan
  • Xiaojun Peng
  • Song Wang
  • Xiaojian Liu
  • Honglin Li
  • Shiguo Sun
Original Paper

Abstract

Detection of Hg2+ in complex natural environmental conditions is extremely challenging, and no entirely successful methods currently exist. Here we report an easy-to-prepare fluorescent sensor B3 with 2-aminophenol as Hg2+ receptor, which exhibits selective fluorescence enhancement toward Hg2+ over other metal ions. Especially, the fluorescence enhancement was unaffected by anions and cations existing in environment and organism. Moreover, B3 can detect Hg2+ in sulphide-rich environments without cysteine, S2- or EDTA altering the fluorescence intensity. Consequently, B3 is capable of distinguishing between safe and toxic levels of Hg2+ in more complicated natural water systems with detection limit ≤2 ppb.

Keywords

Fluorescent sensor 2-aminophenol Hg2+ Sulphide-rich environments 

Notes

Acknowledgements

This work was supported by NSF of China (21076032, 21136002 and 20923006), National Basic Research Program of China (2009CB724706), Scientific Research Fund of Liaoning Provincial Education Department (LS2010040).

References

  1. 1.
    Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662PubMedCrossRefGoogle Scholar
  2. 2.
    Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury—current exposures and clinical manifestations. N Engl J Med 349:1731–1737PubMedCrossRefGoogle Scholar
  3. 3.
    Davidson PW, Myers GJ, Cox C, Axtell C, Shamlaye C, Sloane-Reeves J, Cernichiari E, Needham L, Choi A, Wang Y, Berlin M, Clarkson TW (1998) Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles Child Development Study. J Am Med Assoc 280:701–707CrossRefGoogle Scholar
  4. 4.
    Wang QR, Kim D, Dionysiou DD, Sorial GA, Timberlake D (2004) Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ Pollut 131:323–336PubMedCrossRefGoogle Scholar
  5. 5.
    Malm O (1998) Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ Res 77:73–78PubMedCrossRefGoogle Scholar
  6. 6.
    Petkewich R (2001) Government watch: call for pesticide bans. Environ Sci Technol 35:441ACrossRefGoogle Scholar
  7. 7.
    Von Burg R (1995) Inorganic mercury. J Appl Toxicol 15:483–493CrossRefGoogle Scholar
  8. 8.
    Tao L, Zhou Y, Sun J, Tang D, Guo S, Ding X (2011) Ultrasensitive detection of mercury(II) ion using CdTe quantum dots in sol-gel-derived silica spheres coated with calix[6]arene as fluorescent probes. Mikrochim Acta 175(1–2):113–119Google Scholar
  9. 9.
    Maduraiveeran G, Tamilmani V, Ramaraj R (2011) Silver quantum dots for selective detection of mercuric ions. Curr Sci 100(2):199–204Google Scholar
  10. 10.
    Wang H, Li Y, Fei X, Sun L, Zhang L, Zhang Z, Zhang Y, Li Y, Yang Q (2010) Synthesis and characterization of multifunctional CdTe/Fe2O3@SiO2 core/shell nanosensors for Hg2+ ions detection. New J Chem 34(12):2996–3003CrossRefGoogle Scholar
  11. 11.
    Wang C, Zhao J, Wang Y, Lou N, Ma Q, Su X (2009) Sensitive Hg(II) ion detection by fluorescent multilayer films fabricated with quantum dots. Sensors Actuat B Chem 139(2):476–482CrossRefGoogle Scholar
  12. 12.
    Page LE, Zhang X, Jawaid AM, Snee PT (2011) Detection of toxic mercury ions using a ratiometric CdSe/ZnS nanocrystal sensor. Chem Commun 47(27):7773–7775CrossRefGoogle Scholar
  13. 13.
    Liang A, Wang L, Chen H, Qian B, Ling B, Fu J (2010) Synchronous fluorescence determination of mercury ion with glutathione-capped CdS nanoparticles as a fluorescence probe. Talanta 81(1–2):438–443PubMedCrossRefGoogle Scholar
  14. 14.
    Huang W, Zhu X, Wu D, He C, Wu X, Duan C (2009) Structural modification of rhodamine-based sensors toward highly selective mercury detection in mixed organic/aqueous media. Dalton Trans: 10457–10465Google Scholar
  15. 15.
    Chen X, Nam SW, Jou MJ, Kim Y, Kim SJ, Park S, Yoon J (2008) Hg2+ selective fluorescent and colorimetric sensor: its crystal structure and application to bioimaging. Org Lett 10:5235–5238PubMedCrossRefGoogle Scholar
  16. 16.
    Ko SK, Yang YK, Tae J, Shin I (2006) In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J Am Chem Soc 128:14150–14155PubMedCrossRefGoogle Scholar
  17. 17.
    Yoon S, Albers AE, Wong AP, Chang CJ (2005) Screening mercury levels in fish with a selective fluorescent chemosensor. J Am Chem Soc 127:16030–16031PubMedCrossRefGoogle Scholar
  18. 18.
    Lin W, Cao X, Ding Y, Yuan L, Long L (2010) A highly selective and sensitive fluorescent probe for Hg2+ imaging in live cells based on a rhodamine–thioamide–alkyne scaffold. Chem Commun 46:3529–3531CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Sun Y, Lv X, Liu Y, Chen L, Guo W (2010) Rhodamine-based chemosensor for Hg2+ in aqueous solution with a broad pH range and its application in live cell imaging. Org Biomol Chem 8:4143–4147PubMedCrossRefGoogle Scholar
  20. 20.
    Huang J, Xu Y, Qian X (2009) A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: A NS2-containing receptor. J Org Chem 74:2167–2170PubMedCrossRefGoogle Scholar
  21. 21.
    Lu H, Xing LQ, Liu HZ, Yu MX, Shen Z, Li FY, You XZ (2009) A highly selective and sensitive fluorescent turn-on sensor for Hg2+ and its application in live cell imaging. Org Biomol Chem 7(12):2554–2558PubMedCrossRefGoogle Scholar
  22. 22.
    Lu H, Zl X, Mack J, Shen Z, You XZ, Kobayashi N (2010) Specific Cu2+-induced J-aggregation and Hg2+-induced fluorescence enhancement based on BODIPY. Chem Commun 46(20):3565–3567CrossRefGoogle Scholar
  23. 23.
    Kim H, Nam S, Swamy K, Jin Y, Chen X, Kim Y, Kim S, Park S, Yoon J (2011) Rhodamine hydrazone derivatives as Hg2+ selective fluorescent and colorimetric chemosensors and their applications to bioimaging and microfluidic system. Analyst 136:1339–1343PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang X, Xiao Y, Qian X (2008) A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew Chem Int Ed 47:8025–8029CrossRefGoogle Scholar
  25. 25.
    Ma C, Zeng F, Huang L, Wu S (2011) FRET-based ratiometric detection system for mercury ions in water with polymeric particles as scaffolds. J Phys Chem B 115:874–882PubMedCrossRefGoogle Scholar
  26. 26.
    Coronado E, Galan-Mascaros JR, Marti-Gastaldo C, Palomares E, Durrant JR, Vilar R, Gratzel M, Nazeeruddin MK (2005) Reversible colorimetric probes for mercury sensing. J Am Chem Soc 127:12351–12356PubMedCrossRefGoogle Scholar
  27. 27.
    Santra M, Ryu D, Chatterjee A, Ko SK, Shin I, Ahn KH (2009) A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species. Chem Commun: 2115–2119Google Scholar
  28. 28.
    Du J, Fan J, Peng X, Sun P, Wang J, Li H, Sun S (2010) A new fluorescent chemodosimeter for Hg2+ selectivity, sensitivity, and resistance to Cys and GSH. Org Lett 12(3):476–479PubMedCrossRefGoogle Scholar
  29. 29.
    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PWF, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483PubMedCrossRefGoogle Scholar
  30. 30.
    Namkung W, Padmawar P, Mills AD, Verkman AS (2008) Cell-based fluorescence screen for K+ channels and transporters using an extracellular triazacryptand-based K+ sensor. J Am Chem Soc 130:7794–7795PubMedCrossRefGoogle Scholar
  31. 31.
    Cheng T, Xu Y, Zhang S, Zhu W, Qian X, Duan L (2008) A highly sensitive and selective OFF-ON fluorescent sensor for cadmium in aqueous solution and living cell. J Am Chem Soc 130:16160–16161PubMedCrossRefGoogle Scholar
  32. 32.
    Ekmekci Z, Yilmaz MD, Akkaya EU (2008) A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions. Org Lett 10:461–464PubMedCrossRefGoogle Scholar
  33. 33.
    Sun Z, Liu F, Chen Y, Tam P, Yang D (2008) A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid. Org Lett 10:2171–2174PubMedCrossRefGoogle Scholar
  34. 34.
    Atilgan S, Ozdemir T, Akkaya EU (2008) A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl–bodipy fluorophore. Org Lett 10:4065–4067PubMedCrossRefGoogle Scholar
  35. 35.
    Yuan M, Zhou W, Liu X, Zhu M, Li J, Yin X, Zheng H, Zuo Z, Ouyang C, Liu H, Li Y, Zhu D (2008) A multianalyte chemosensor on a single molecule: promising structure for an integrated logic gate. J Org Chem 73:5008–5014PubMedCrossRefGoogle Scholar
  36. 36.
    Du JJ, Fan JL, Peng XJ, Li HL, Wang JY, Sun SG (2008) Highly selective and anions controlled fluorescent sensor for Hg2+ in aqueous environment. J Fluoresc 18:919–924PubMedCrossRefGoogle Scholar
  37. 37.
    Fan JL, Guo KX, Peng XJ, Du JJ, Wang JY, Sun SG, Li HL (2009) A Hg2+ fluorescent chemosensor without interference from anions and Hg2+-imaging in living cells. Sensor Actuat B Chem 142:191–196CrossRefGoogle Scholar
  38. 38.
    Bahgat K, Orabi AS (2002) Physical characteristics, vibrational spectroscopy and normal-coordinate analysis of 2-aminophenol and 2-phenylenediamine complexes. Polyhedron 21:987–996CrossRefGoogle Scholar
  39. 39.
    Fischer M, Georges J (1996) Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem Phys Lett 260:115–118CrossRefGoogle Scholar
  40. 40.
    Shen H, Röhr K, Rurack H, Uno M, Spieles B, Schulz G, Ono N (2004) Boron–Diindomethene (BDI) dyes and their tetrahydrobicyclo precursors—en route to a new class of highly emissive fluorophores for the red spectral range. Chem Eur J 10:4853–4871PubMedCrossRefGoogle Scholar
  41. 41.
    Cui AJ, Peng XJ, Fan JL, Chen XY, Wu YK, Guo BC (2007) Synthesis, spectral properties and photostability of novel boron–dipyrromethene dyes. J Photochem Photobiol A Chem 186:85–92CrossRefGoogle Scholar
  42. 42.
    Kuntz D, Gasparro FP, Johnston MD, Taylor RP (1968) Molecular interactions and the Benesi-Hildebrand equation. J Am Chem Soc 90:4778–4781CrossRefGoogle Scholar
  43. 43.
    Iyoshi S, Taki M, Yamamoto Y (2008) Rosamine-based fluorescent chemosensor for selective detection of silver(I) in an aqueous solution. Inorg Chem 47:3946PubMedCrossRefGoogle Scholar
  44. 44.
    Nolan EM, Lippard SJ (2007) Turn-on and ratiometric mercury sensing in water with a red-emitting probe. J Am Chem Soc 129:5910–5918PubMedCrossRefGoogle Scholar
  45. 45.
    Nolan EM, Racine ME, Lippard SJ (2006) Selective Hg(II) detection in aqueous solution with thiol derivatized fluoresceins. Inorg Chem 45:2479–2742CrossRefGoogle Scholar
  46. 46.
    Nolan EM, Lippard SJ (2005) MS4, a seminaphthofluorescein-based chemosensor for the ratiometric detection of Hg(II). J Mater Chem 15:2778–2783CrossRefGoogle Scholar
  47. 47.
    Lee SJ, Jung JH, Seo J, Yoon I, Park KM, Lindoy LF, Lee SS (2006) A chromogenic macrocycle exhibiting cation-selective and anion-controlled color change: an approach to understanding structure–color relationships. Org Lett 8:1641–1643PubMedCrossRefGoogle Scholar
  48. 48.
    Wu D, Huang W, Lin Z, Duan C, He C, Wu S, Wang D (2008) Highly sensitive multiresponsive chemosensor for selective detection of Hg2+ in natural water and different monitoring environments. Inorg Chem 47:7190–7201PubMedCrossRefGoogle Scholar
  49. 49.
    Mercury update: impact on fish advisories, EPA fact sheet EPA-823-F-01-011; EPA, Office of Water, Washington, DC, 2001Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jiangli Fan
    • 1
  • Xiaojun Peng
    • 1
  • Song Wang
    • 1
  • Xiaojian Liu
    • 1
  • Honglin Li
    • 1
  • Shiguo Sun
    • 1
  1. 1.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations