Advertisement

Journal of Fluorescence

, Volume 22, Issue 2, pp 659–676 | Cite as

Fluorescence and Electrochemical Sensing of Pesticides Methomyl, Aldicarb and Prometryne by the Luminescent Europium-3-Carboxycoumarin Probe

  • Hassan A. AzabEmail author
  • Axel Duerkop
  • E. M. Mogahed
  • F. K. Awad
  • R. M. Abd El Aal
  • Rasha M. Kamel
Original Paper

Abstract

This work describes the application of time resolved fluorescence in microtiterplates and electrochemical methods on glassy carbon electrode for investigating the interactions of europium-3-carboxycoumarin with pesticides aldicarb, methomyl and prometryne. Stern-volmer studies at different temperatures indicate that static quenching dominates for methomyl, aldicarb and prometryne. By using Lineweaver-Burk equation binding constants were determined at 303 K, 308 K and 313 K. A thermodynamic analysis showed that the reaction is spontaneous with ΔG being negative. The enthalpy ΔH and the entropy ΔS of reactions were all determined. A time-resolved (gated) luminescence-based method for determination of pesticides in microtiterplate format using the long-lived europium-3-carboxycoumarin has been developed. The limit of detection is 4.80, 5.06 and 8.01 μmol L−1 for methomyl, prometryne and aldicarb, respectively. This is the lowest limit of detection achieved so far for luminescent lanthanide-based probes for pesticides. The interaction of the probe with the pesticides has been investigated using cyclic voltammetry (CV), differential pulse polarography (DPP), square wave voltammetry (SWV) and linear sweep voltammetry (LSV) on a glassy carbon electrode in I = 0.1 mol L−1 p-toluenesulfonate at 25 °C. The diffusion coefficients of the reduced species are calculated. The main properties of the electrode reaction occurring in a finite diffusion space are the quasireversible maximum and the splitting of the net SWV peak for Eu(III) ions in the ternary complex formed . It was observed that the increase of the cathodic peak currents using LSV is linear with the increase of pesticides concentration in the range 5 × 10−7 to 1 × 10−5 mol L−1. The detection limit (DL) were about 1.01, 2.23 and 1.89 μmolL−1 for aldicarb, methomyl and prometryne, respectively. In order to assess the analytical applicability of the method, the influence of various potentially interfering species was examined. Influence of interfering species on the recovery of 10 μmol L−1 pesticides has been investigated.

Keywords

Europium-3-carboxycoumarin Time resolved fluorescence Pesticides aldicarb Methomyl Prometryne Cyclic voltammetry Differential pulse voltammetry Linear sweep voltammetry Glassy carbon electrode 

Notes

Acknowledgment

The authors thank SFP982697 project for financial support of the work done during this study.

References

  1. 1.
    Gascon J, Oubina A, Barcelo D (1997) Detection of endocrine-disrupting pesticides by enzyme-linked immunosorbent assay (ELISA): application to atrazine. Trends Anal Chem 16:554CrossRefGoogle Scholar
  2. 2.
    Palchetti I, Cagnini A, DelCarlo M, Coppi C, Mascini M, Turner APF (1997) Determination of anticholinesterase pesticides in real samples using a disposable biosensor. Anal Chim Acta 337:315CrossRefGoogle Scholar
  3. 3.
    Maria DH, Ana A, Amadeo RFA, Luis P, Mariano C (2001) Gas chromatographic determination of pesticides in vegetable samples by sequential positive and negative chemical ionization and tandem mass spectrometric fragmentation using an ion trap analyser. Analyst 126:46CrossRefGoogle Scholar
  4. 4.
    Wang JH, Wang GT, Yuan SM (1999) Supercritical fluid extraction gas chromatographic determination of organophosphorus pesticides in vegetables and fruits. Chin J Anal Lab (Fenxi Shiyanshi) 18:55Google Scholar
  5. 5.
    Guiberteau A, Galeamo DJ, Salinas F, Ortiz JM (1995) Indirect voltammetric determination of carbaryl and carbofuran using partial least squares calibration. Anal Chim Acta 305:219CrossRefGoogle Scholar
  6. 6.
    Salleh SH, Saito Y, Kiso Y, Jinno K (2001) Solventless sample preparation procedure for organophosphorus pesticides analysis using solid phase microextraction and on-line supercritical fluid extraction/high performance liquid chromatography technique. Anal Chim Acta 433:207CrossRefGoogle Scholar
  7. 7.
    Shoko A, Takeo K, Takayuki S (2002) Effect of ultraviolet—absorbing vinyl film on organophosphorus insecticides dichlorvos and fenitrothion residues in spinach. J Environ Sci Health B 37:291CrossRefGoogle Scholar
  8. 8.
    Meng ZY, Ma YN (1996) An expert system knowledge base for the analysis of infrared spectra of organophosphorus compounds. J Microchem 53:371CrossRefGoogle Scholar
  9. 9.
    Carro AM, Lorenzo RA (2001) Simultaneous optimization of the solid-phase extraction of organochlorine and organophosphorus pesticides using the desirability function. Analyst 126:1005PubMedCrossRefGoogle Scholar
  10. 10.
    Efremenko EN, Sergeeva VS (2001) Organophosphate hydrolase—an enzyme catalyzing degradation of phosphorus-containing toxins and pesticides. Russ Chem Bull 50:1826CrossRefGoogle Scholar
  11. 11.
    Ana A, Mariano C, Juan C, Amadeo FAR (2002) Multiresidue method for the analysis of multiclass pesticides in agricultural products by gas chromatography-tandem mass spectrometry. Analyst 127:347CrossRefGoogle Scholar
  12. 12.
    Ivanov AN, Evtyugin GA, Brainina KhZ, Budnikov GK, Stenina LE (2002) Cholinesterase sensors based on thick-film graphite electrodes for the flow-injection determination of organophosphorus pesticides. J Anal Chem 57:1042CrossRefGoogle Scholar
  13. 13.
    Mukkala VM, Mikola M, Hemmilä I (1989) The synthesis and use of activated N-benzyl derivatives of diethylenetriaminetetraacetic acids: alternative reagents for labeling of antibodies with metal ions. Anal Biochem 176:319PubMedCrossRefGoogle Scholar
  14. 14.
    Mathis G (1993) Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin Chem 39:1953PubMedGoogle Scholar
  15. 15.
    Diamandis EP, Christopoulos TK (1990) Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays (Review). Anal Chem 62:1149APubMedCrossRefGoogle Scholar
  16. 16.
    Elbanovski M, Makowska B (1996) The lanthanides as luminescent probes in investigations of biochemical systems. J Photochem Photobiol A 99:85CrossRefGoogle Scholar
  17. 17.
    Gudgin Dickson EF, Pollak A, Diamandis EP (1995) Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. J Photochem Photobiol B 27:3CrossRefGoogle Scholar
  18. 18.
    Lis S, Elbanowski M, Makowska B, Hnatejko Z (2002) Energy transfer in solution of lanthanide complexes. Photobiology A 150:233CrossRefGoogle Scholar
  19. 19.
    Barker GC, Jenkin IL (1952) Square-wave polarography. Analyst 77:685CrossRefGoogle Scholar
  20. 20.
    Wang J (2000) Analytical electrochemistry, 2nd edn. Wiely-VCH, New YorkCrossRefGoogle Scholar
  21. 21.
    Van Houten KA, Heath DC, Pilato RS (1998) Rapid luminescent detection of phosphate esters in solution and the gas phase using (dppe)Pt{S2C2(2-pyridyl)(CH2CH2OH)}. J Am Chem Soc 120:12359–12360CrossRefGoogle Scholar
  22. 22.
    Paliwal S, Wales M, Good T, Grimsley J, Wild J, Simonian A (2007) Fluorescence-based sensing of p-nitrophenol and p-nitrophenyl substituent organophosphates. Anal Chim Acta 596:9–15PubMedCrossRefGoogle Scholar
  23. 23.
    Delattre F, Cazier F, Tine A (2009) Use a fluorescent molecular sensor for the detection of pesticides and herbicides in water. Curr Anal Chem 5:48–52CrossRefGoogle Scholar
  24. 24.
    De Souza D, Machado SAS (2006) Study of the electrochemical behavior and sensitive detection of pesticides using microelectrodes allied to square-wave voltammetry. Electroanalysis 18(9):862–872CrossRefGoogle Scholar
  25. 25.
    Ko HJ, Park TH (2006) Dual signal transduction mediated by a single type of olfactory receptor expressed in a heterologous system. Biol Chem 387:59–68PubMedCrossRefGoogle Scholar
  26. 26.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New York, p 87, 95, 237–249, 331Google Scholar
  27. 27.
    Mason SF (1984) Mechanism for f-f transition probabilities in lanthanide coordination compounds. Inorganica Chemica Acta 94:88CrossRefGoogle Scholar
  28. 28.
    Jeiowska-Trzebia B, Legendziewicz (1984) Absorption and fluorescence spectra of europium(II1) compounds in non-aqueous solutions. Inorganica Chimica Acta 95:157–163CrossRefGoogle Scholar
  29. 29.
    Latva M, Takalo H, Simberg K, Kankare J (1995) Enhanced EuIII ion luminescence and efficient energy transfer between lanthanide chelates within the polymeric structure in aqueous solutions. J Chem Soc Perkin Trans 2:995Google Scholar
  30. 30.
    Ocaña JA, Barragán FJ, Callejon M (2004) Fluorescence and terbium-sensitised luminescence determination of garenoxacin in human urine and serum. Talanta 63:691PubMedCrossRefGoogle Scholar
  31. 31.
    Beckford FA (2009) Reaction of the anticancer organometallic ruthenium compound [(η 6 -p-cymene)Ru(ATSC)Cl]PF6with human serum albumin. Int J Inorg Chem 2010:975756Google Scholar
  32. 32.
    Ross PD, Subranmanian S (1981) Thermodynamics of protein association reactions-forced contributing to stability. Biochemistry 20:3096–3102PubMedCrossRefGoogle Scholar
  33. 33.
    Bard AJ, Faulkner RL (1980) Electrochemical methods fundamentals and applications. Wiley, New York, 218Google Scholar
  34. 34.
    Galus Z (1994) Fundamentals of electrochemical analysis. Ellis Horwood, LondonGoogle Scholar
  35. 35.
    Nicholson RS, Shain I (1964) Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. J Anal Chem 36:706CrossRefGoogle Scholar
  36. 36.
    Mircêski V (2004) Charge transfer kinetics in thin-film voltammetry. Theoretical study under conditions of square-wave voltammetry. J Phys Chem B 108:13719–13725CrossRefGoogle Scholar
  37. 37.
    Bruce JI, Dickins RS, Govenlock LJ, Gunnlaugsson T, Lopinski S, Lowe MP, Parker D, Peacock RD, Perry JJB, Aime S, Botta M (2000) The selectivity of reversible oxy-anion binding in aqueous solution at a chiral europium and terbium center: signaling of carbonate chelation by changes in the form and circular polarization of luminescence emission. J Am Chem Soc 122:9674CrossRefGoogle Scholar
  38. 38.
    Bretonniere Y, Cann MJ, Parker D, Slater R (2004) Design, synthesis and evaluation of ratiometric probes for hydrogencarbonate based on europium emission. Org Biomol Chem 2:1624PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hassan A. Azab
    • 1
    Email author
  • Axel Duerkop
    • 2
  • E. M. Mogahed
    • 3
  • F. K. Awad
    • 3
  • R. M. Abd El Aal
    • 3
  • Rasha M. Kamel
    • 3
  1. 1.Chemistry Department, Faculty of scienceSuez Canal UniversityIsmailiaEgypt
  2. 2.Institute of Analytical Chemistry, Chemo and BiosensorsRegensburg UniversityRegensburgGermany
  3. 3.Chemistry Department, Faculty of ScienceSuez Canal UniversitySuezEgypt

Personalised recommendations