Advertisement

Journal of Fluorescence

, Volume 22, Issue 1, pp 59–69 | Cite as

Procedures for Controlling the Size, Structure and Optical Properties of CdS Quantum Dots during Synthesis in Aqueous Solution

  • María-Jesús Almendral-ParraEmail author
  • Ángel Alonso-Mateos
  • Sara Sánchez-Paradinas
  • Juán F. Boyero-Benito
  • Emilio Rodríguez-Fernández
  • Julio J. Criado-Talavera
Original Paper

Abstract

We report an easy approach for the synthesis of CdS Quantum Dots (CdS QDs) with high luminescence and temporal stability through the reaction of Cd2+ and S2- in the presence of mercaptoacetic acid (MAA) as a capping reagent in aqueous medium, under normal pressure and room temperature. The influence of several experimental variables, including temperature, pH, the Cd/S ratio and the Cd/MAA ratio, on the optical properties of the QDs obtained was studied systematically. The experimental results indicate that these variables play an important role in determining the size and state of the surface of the nanoparticles, and hence their luminescent properties and temporal stability. The general aspects of nanocrystal nucleation and growth in the synthesis of nanocrystals were studied. The best conditions for the synthesis of nanoparticles of high quality are also reported. The CdS nanocrystals obtained exhibited a narrow PL band, with reproducible room-temperature quantum yields.

Keywords

CdS quantum dots, Nanoparticles Synthesis Quantum yield Photoluminescence enhancement 

Notes

Acknowledgements

We thank the Council for Education and Culture of the Regional Government of Castilla y León for financial support.

References

  1. 1.
    Bailey RE, Smith AM, Nie S (2004) Quantum dots in biology and medicine. Physica E 25:1–12CrossRefGoogle Scholar
  2. 2.
    Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72PubMedCrossRefGoogle Scholar
  3. 3.
    Costa JM, Rosario Pereiro R, Sanz-Medel A (2006) The use luminescent quantum dots for optical sensing. Trend Anal Chem 25:207–218CrossRefGoogle Scholar
  4. 4.
    Liu T, Liu B, Zhang H, Wang Y (2005) The fluorescence bioassay platforms on quantum dots nanoparticles. J Fluoresc 15:729–733PubMedCrossRefGoogle Scholar
  5. 5.
    Alivisatos AP (1996) Semiconductors clusters, nanocrystals and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  6. 6.
    Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticle, syntheses, optical properties, and biological applications. Anal Bioanal Chem 391:2469–2495PubMedCrossRefGoogle Scholar
  7. 7.
    Yu WW, Chang E, Drezek R, Colvin VL (2006) Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348:781–786PubMedCrossRefGoogle Scholar
  8. 8.
    Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, Iyer G, Weiss S (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27:1679–1687PubMedCrossRefGoogle Scholar
  9. 9.
    Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732PubMedCrossRefGoogle Scholar
  10. 10.
    Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 2:47–52CrossRefGoogle Scholar
  11. 11.
    Tran PT, Goldman ER, Anderson GP, Mauro JM, Mattoussi H (2002) Use of luminescent CdSe-ZnS nanocrystal bioconjugates in quantum dot-based nanosensors. Physica Status Solidi B 229:427–432CrossRefGoogle Scholar
  12. 12.
    Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871CrossRefGoogle Scholar
  13. 13.
    Parak WJ, Gerion D, Zanchet D, Woerz AS, Pellegrino T, Micheel C, Williams SC, Seitz M, Richard M, Bruehl E, Bryant Z, Bustamante C, Bertozzi CR, Alivisatos AP (2002) Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem Mater 14:2113–2119CrossRefGoogle Scholar
  14. 14.
    Wang SP, Mamedova N, Kotov NA, Chen W, Studer J (2002) Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Letters 2:817–822CrossRefGoogle Scholar
  15. 15.
    Guo W, Li JJ, Wang YA, Peng X (2003) Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem Mater 15:3125–3133CrossRefGoogle Scholar
  16. 16.
    Wu XY, Wu X, Liu H, Liu J, Kari N, Haley KN, Treadway JA, Larson JP, Nianfeng GN, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46PubMedCrossRefGoogle Scholar
  17. 17.
    Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14:882–885CrossRefGoogle Scholar
  18. 18.
    Hild WA, Breuning M, Goepferich A (2008) Quantum dots-Nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm 68:153–168PubMedCrossRefGoogle Scholar
  19. 19.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762PubMedCrossRefGoogle Scholar
  20. 20.
    Taylor JR, Fang MM, Nie SM (2000) Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal Chem 72:1979–1986PubMedCrossRefGoogle Scholar
  21. 21.
    Xu HX, Sha MY, Wong EY, Uphoff J, Xu YZ, Treadway JA, Truong A, O’Brien E, Asquith S, Stubbins M, Spurr NK, Lai EH, Mahoney W (2003) Multiplexed SNP genotyping using the QbeadTM system: a quantum dot encoded microsphere-based assay. Nucleic Acids Res 31:1–10CrossRefGoogle Scholar
  22. 22.
    Han MY, Gao XH, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635PubMedCrossRefGoogle Scholar
  23. 23.
    Zou L, Fang Z, Gu Z, Zhong X (2009) Aqueous phase synthesis of biostabilizer capped CdS nanocrystals with bright emission. J Lumin 129:536–540CrossRefGoogle Scholar
  24. 24.
    Yu W, Peng X (2002) Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed 41:2368CrossRefGoogle Scholar
  25. 25.
    Zhong X, Liu S, Zhang Z, Li L, Weib Z, Knoll W (2004) Synthesis of high-quality CdS, ZnS, and ZnxCd1–xS nanocrystals using metal salts and elemental sulfur. J Mater Chem 14:2790–2794CrossRefGoogle Scholar
  26. 26.
    Barglik-Chory Ch, Buchold D, Muller G (2003) Synthesis, structure and spectroscopic characterization of water-soluble CdS nanoparticles. Chem Phys Lett 379:443–451CrossRefGoogle Scholar
  27. 27.
    Chen YF, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138PubMedCrossRefGoogle Scholar
  28. 28.
    Qi L, Colfen H, Antonietti M (2001) Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers. Nano Lett 1:61–65CrossRefGoogle Scholar
  29. 29.
    Unni C, Philip D, Gopchandran KG (2008) Studies on optical absorption and photoluminescence of thioglycerol-stabilized CdS quantum dots. Spectrochim Acta A Mol Biomol Spectrosc 71:1402–1407PubMedCrossRefGoogle Scholar
  30. 30.
    Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallite. J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  31. 31.
    Unni C, Philip D, Smitha SL, Nissamudeen KM, Gopchandran KG (2009) Aqueous synthesis and characterization of CdS, CdS:Zn2+ and CdS:Cu quantum dots. Spectrochim Acta A 72:827–832CrossRefGoogle Scholar
  32. 32.
    Gao XH, Chan WCW, Nie SM (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7:532–537PubMedCrossRefGoogle Scholar
  33. 33.
    Kar S, Panda SK, Satpati B, Satyan PV, Chaudhuri SJ (2006) Morphology and size dependent optical properties of CdS in different nanoforms. Nanosci Nanotechnol 6:771–776CrossRefGoogle Scholar
  34. 34.
    Pradhan N, Efrima S (2003) Single-precursor, one-pot versatile synthesis under near ambient conditions of tunable, single and dual band fluorescing metal sulfide nanoparticles. J Am Chem Soc 125:2050–2051PubMedCrossRefGoogle Scholar
  35. 35.
    Zheng ChJ, Gao A, He Y, Wu C, Chen G, Kai Y, Zhu XC (2008) Functionalizad CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochim Acta A 69:1044–1052CrossRefGoogle Scholar
  36. 36.
    Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029CrossRefGoogle Scholar
  37. 37.
    Moffitt M, Aisenberg E (1997) Size control of nanoparticles in semiconductor-polymer composites. 1. Control via multiplet aggregation numbers in styrene-based random ionomers. Chem Mater 7:1178–1183CrossRefGoogle Scholar
  38. 38.
    He R, Qian X, Yin J, Xi H, Bian L, Zhu Z (2003) Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation. Colloids Surf A 220:151–155CrossRefGoogle Scholar
  39. 39.
    Yu K, Zaman B, Taal R, Ripmeester JA (2005) Colloidal CdSe nanocrystals from tri-n-octylphosphine with various Cd sources: control of a slow growth for high-quality and large-scale production. J Cryst Growth 283:115–123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • María-Jesús Almendral-Parra
    • 1
    Email author
  • Ángel Alonso-Mateos
    • 1
  • Sara Sánchez-Paradinas
    • 1
  • Juán F. Boyero-Benito
    • 1
  • Emilio Rodríguez-Fernández
    • 2
  • Julio J. Criado-Talavera
    • 2
  1. 1.Department of Analytical ChemistryUniversity of SalamancaSalamancaSpain
  2. 2.Department of Inorganic ChemistryUniversity of SalamancaSalamancaSpain

Personalised recommendations