Journal of Fluorescence

, 21:2133 | Cite as

Fluorescence Properties and Dipole Moments of Novel Fused Thienobenzofurans. Solvent and Structural Effects

  • Jean-Jacques AaronEmail author
  • Cyril Párkányi
  • Alain Adenier
  • Caroline Potin
  • Zuzana Zajíčková
  • Omar R. Martínez
  • Jiří Svoboda
  • Pavel Pihera
  • Petr Váchal
Original Paper


The electronic absorption, fluorescence excitation and emission spectra, and fluorescence quantum yields of novel fused thienobenzofurans, including thieno[3,2-b][1]benzofuran (1), [1]benzothieno[3,2-b]furan (2), and [1]benzothieno[3,2-b][1]benzofuran (3), were recorded in fourteen solvents of different polarities at room temperature. Compound 2 was not fluorescent. Experimental ground-state dipole moments of compounds 13 were measured in benzene at 298 K and compared with the corresponding theoretical dipole moment values. The solvent effects on the electronic absorption and fluorescence spectra of these thienobenzofurans were quantitatively investigated by means of solvatochromic correlations based on the Kawski-Chamma-Viallet and McRae equations. A weak negative solvatochromic behavior was found for these compounds, showing that their dipole moments are slightly lower in the excited singlet-state than in the ground-state. Kamlet-Abboud-Taft multiparameter relationships were also established for electronic absorption and fluorescence wavenumbers, and fluorescence quantum yields in most solvents, demonstrating the occurrence of specific solute-solvent interactions.


Fused thienobenzofurans Electronic absorption spectra Fluorescence Dipole moments Solvatochromic correlations Kamlet-Abboud-Taft relationships Quantum-chemical calculations 


  1. 1.
    Cernovska K, Svoboda J, Stibor I, Glagarova M, Vanek P, Novotna V (2000) Ferroelectrics 241:231CrossRefGoogle Scholar
  2. 2.
    Kosata B, Kozmik V, Svoboda J, Novotna V, Vanek P, Glogarova M (2003) Liq Cryst 30:603CrossRefGoogle Scholar
  3. 3.
    Lô C, Adenier A, Chane-Ching K, Maurel F, Aaron JJ, Kosata B, Svoboda J (2006) Synth Met 156:256CrossRefGoogle Scholar
  4. 4.
    Lô C, Adenier A, Maurel F, Aaron JJ, Kosmik V, Svoboda J (2008) Synth Met 158:6CrossRefGoogle Scholar
  5. 5.
    Aaron JJ, Mechbal Z, Adenier A, Parkanyi C, Kozmik V, Svoboda J (2002) J Fluorescence 12:231CrossRefGoogle Scholar
  6. 6.
    Aaron JJ, Mezlova M, Capochichi M, Svoboda J, Brochon JC, Guiot E (2006) Luminescence 21:330Google Scholar
  7. 7.
    Lô C, Aaron JJ, Svoboda J, Brochon JC, Na L (2008) Luminescence 23:240Google Scholar
  8. 8.
    Lô C, Aaron JJ, Kozmík V, Svoboda J, Brochon JC, Na L (2010) J Fluorescence 20:1037CrossRefGoogle Scholar
  9. 9.
    Cagniant P, Kirsch G, Perrin L (1973) C R Acad Sci Paris Ser C 276:1561Google Scholar
  10. 10.
    Váchal P, Pihera P, Svoboda J (1997) Collect Czech Chem Comm 62:1468CrossRefGoogle Scholar
  11. 11.
    Svoboda J, Nič M, Paleček J (1993) Collect Czech Chem Comm 58:2983CrossRefGoogle Scholar
  12. 12.
    Aitken RA, Bradbury CK, Burns G, Morrison JT (1995) Synlett 53Google Scholar
  13. 13.
    Pihera J, Paleček J, Svoboda J (1998) Collect Czech Chem Comm 63:681CrossRefGoogle Scholar
  14. 14.
    Černovská K, Nič M, Pavel P, Svoboda J (2000) Collect Czech Chem Comm 65:1939CrossRefGoogle Scholar
  15. 15.
    Párkányi C, Aaron JJ (1998) In: Párkányi C (ed) Theoretical organic chemistry. Amsterdam, Elsevier, p 233, and references thereinGoogle Scholar
  16. 16.
    Aaron JJ, Maafi M, Párkányi C, Boniface C (1995) Spectrochim Acta A 51:603CrossRefGoogle Scholar
  17. 17.
    Aaron JJ, Gaye Seye MD, Trajkovska S, Motohashi N (2009) In: Motohashi N (ed) Topics in heterocyclic chemistry, vol 16: bioactive heterocycles VII–flavonoids and anthocyanins in plants, and latest bioactive heterocycles II. Springer, Heidelberg, pp 153–231Google Scholar
  18. 18.
    Cisse L, Djande A, Capo-Chichi M, Delatre F, Saba A, Tine A, Aaron J-J (2011) Spectrochim Acta A 79:428Google Scholar
  19. 19.
    Fouad I, Mechbal Z, Chane-Ching K, Adenier A, Maurel F, Aaron JJ, Vodička P, Černovská K, Kozmík V, Svoboda J (2004) J Mater Chem 14:1711CrossRefGoogle Scholar
  20. 20.
    Demas JN (1982) In: Mielenz KD (ed) Optical radiation measurements: measurement of photoluminescence, vol. 3. Academic, New York, p 195Google Scholar
  21. 21.
    Aaron JJ, Tine A, Gaye MD, Párkányi C, Boniface C, Bieze TWN (1991) Spectrochim Acta 47A:419Google Scholar
  22. 22.
    Hedestrand G (1929) Z Physik Chem B2:428Google Scholar
  23. 23.
    Guggenheim EA (1949) Trans Faraday Soc 45:714CrossRefGoogle Scholar
  24. 24.
    Smith JW (1950) Trans Faraday Soc 46:394CrossRefGoogle Scholar
  25. 25.
    Exner O (1975) Dipole moments in organic chemistry. G. Thieme, StuttgartGoogle Scholar
  26. 26.
    Mechbal Z, Adenier A, Aaron JJ, Párkányi C, Svoboda J (2001) Abstracts of Papers, 221st ACS National Meeting, San Diego, CA, USA, April 1–5, Abstract PHYS-250 (2001)Google Scholar
  27. 27.
    Pariser R, Parr RG (1953) J Chem Phys 21:466CrossRefGoogle Scholar
  28. 28.
    Pople JA (1953) Trans Faraday Soc 49:1375CrossRefGoogle Scholar
  29. 29.
    Smyth CP (1955) Dielectric behaviour and structure. McGraw-Hill, New YorkGoogle Scholar
  30. 30.
    Minkin VI, Osipov OA, Zhdanov Yu. A (1970) Dipole moments in organic chemistry. Plenum Press, New York, NY—Dipol’nye Momenty. Khimiya, Leningrad (1968)Google Scholar
  31. 31.
    Ferguson LN (1977) Organic molecular structure. Willard Grant, BostonGoogle Scholar
  32. 32.
    HyperChem™, Hypercube, Inc., 1115 NW 4th Street, Suite, Gainesville, FL 32601, USAGoogle Scholar
  33. 33.
    Kawski A, Bilot L (1964) Acta Phys Polon 26:41Google Scholar
  34. 34.
    Kawski A (1966) Acta Phys Polon 29:507Google Scholar
  35. 35.
    Chamma A, Viallet P (1970) C R Acad Sci Ser C 27:1901Google Scholar
  36. 36.
    McRae EG (1957) J Phys Chem 61:562CrossRefGoogle Scholar
  37. 37.
    Prabhumirashi LS (1983) Spectrochim Acta A 39:91CrossRefGoogle Scholar
  38. 38.
    Suppan P (1983) Chem Phys Lett 94:272CrossRefGoogle Scholar
  39. 39.
    Párkányi C, Oruganti SR, Abdelhamid AO, von Szentpály L, Ngom B, Aaron JJ (1986) J Mol Struct (THEOCHEM) 135:105CrossRefGoogle Scholar
  40. 40.
    Párkányi C, Boniface C, Aaron JJ, Gaye MD, von Szentpály L, Ghosh R, RaghuVeer KS (1992) Struct Chem 3:277CrossRefGoogle Scholar
  41. 41.
    Aaron JJ, Buna M, Párkányi C, Antonious MS, Tine A, Cissé L (1995) J Fluoresc 5:337CrossRefGoogle Scholar
  42. 42.
    Kamlet MJ, Abboud LM, Taft RW (1977) J Am Chem Soc 99:6027CrossRefGoogle Scholar
  43. 43.
    Kamlet MJ, Abboud LM, Taft RW (1983) J Org Chem 48:2877CrossRefGoogle Scholar
  44. 44.
    Aaron JJ, Maafi M, Kersebet C, Párkányi C, Antonious MS, Motohashi N (1996) J Photochem Photobiol A: Chem 101:127CrossRefGoogle Scholar
  45. 45.
    Burget D, Jacques P (1991) J Chim Phys 88:675Google Scholar
  46. 46.
    Fall M, Aaron JJ, Dieng MM, Parkanyi C (2000) Polymer 41:4047CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jean-Jacques Aaron
    • 1
    • 2
    Email author
  • Cyril Párkányi
    • 3
  • Alain Adenier
    • 2
  • Caroline Potin
    • 2
  • Zuzana Zajíčková
    • 4
  • Omar R. Martínez
    • 3
  • Jiří Svoboda
    • 5
  • Pavel Pihera
    • 5
  • Petr Váchal
    • 5
  1. 1.Laboratoire Géomatériaux et Environnement (LGE), EA 4119Université Paris-Est Marne-la-ValléeMarne la ValléeFrance
  2. 2.Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), Associé au CNRS, UMR 70–86Université Paris DiderotParisFrance
  3. 3.Department of Chemistry and BiochemistryFlorida Atlantic UniversityBoca RatonUSA
  4. 4.Department of Physical SciencesBarry UniversityMiami ShoresUSA
  5. 5.Department of Organic ChemistryPrague Institute of Chemical TechnologyPrague 6Czech Republic

Personalised recommendations