Journal of Fluorescence

, Volume 21, Issue 5, pp 1887–1895 | Cite as

Spectroscopic Studies on TiO2 Enhanced Binding of Hypocrellin B with DNA

  • Ganesan Paramaguru
  • Rajadurai Vijay Solomon
  • Ponnambalam Venuvanalingam
  • Rajalingam Renganathan
Original Paper


The binding of Hypocrellin B-TiO2 chelate with DNA has been studied by using absorption, steady state fluorescence, cyclic voltammetry, time resolved fluorescence and laser flash photolysis measurements. The experimental results show that the presence of TiO2 nanoparticles increases the binding of Hypocrellin B with DNA. The groove binding mode is confirmed by spectroscopic and docking studies. Laser flash photolysis studies confirm the presence of electrons in the conduction band of TiO2 which will produce active oxygen species and results in damage of DNA indicating the potential application of Hypocrellin B-TiO2 chelate in the field of photodynamic therapy (PDT).


Hypocrellin B TiO2 DNA Groove binding Docking studies 



R. R and G. P thank CSIR (Ref. No. 01(2217)/08/EMR-II, dt. 06/05/2008) for the Project and Fellowship respectively. P. V thanks the CSIR, India, for their financial support in the form of a research grant (Ref. No. 02(2158)/07/EMR-II). P. V and R. VS thank the UGC, INDIA for the financial support through Maulana Azad National Fellowship (Ref. No. F.40-17(C/M)/2009(SA-III/MANF). Authors also thank UGC/DST-FIST for UV–VIS and Fluorescence facilities in the School of Chemistry, Bharathidasan University. We are thankful to Prof. P. Ramamurthy, NCUFP, University of Madras, Chennai for time resolved measurements and Laser flash photolysis. We are thankful to Dr. S. Anandan, National Institute of Technology, Trichy for cyclic voltammetry measurements.


  1. 1.
    Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669PubMedCrossRefGoogle Scholar
  2. 2.
    Diwu Z, Lown JW (1992) Photosensitization by anticancer agents 12. Perylene quinonoid pigments, a novel type of singlet oxygen sensitizer. J Photochem Photobiol A Chem 64:273–287CrossRefGoogle Scholar
  3. 3.
    Zhou J, Liu J, Xia S, Wang X, Zhang B (2005) Effect of chelation to lanthanum ions on the photodynamic properties of Hypocrellin A. J Phys Chem B 109:19529–19535PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang J, Cao EH, Li JF, Zhang TC, Ma WJ (1998) Photodynamic effects of hypocrellin A on three human malignant cell lines by inducing apoptotic cell death. J PhotochemPhotobiol B Biol 43:106–111CrossRefGoogle Scholar
  5. 5.
    Artemyev MV, Woggon U, Wannemacher R, Jaschinski H, Langbein W (2001) Light trapped in a photonic dot: microspheres act as a cavity for quantum dot emission. Nano Lett 1:309–314CrossRefGoogle Scholar
  6. 6.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016PubMedCrossRefGoogle Scholar
  7. 7.
    Wu X, Liu H, Liu J, Haley K, Treadway J, Larson J, Ge N, Peals F, Bruchez M (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46PubMedCrossRefGoogle Scholar
  8. 8.
    Wiseman A (1985) Handbook of enzyme biotechnology. Horwood ChichesterGoogle Scholar
  9. 9.
    Kathiravan A, Paramaguru G, Renganathan R (2009) Study on the binding of colloidal zinc oxide nanoparticles with bovine serum albumin. J Mol Struct 934:129–137CrossRefGoogle Scholar
  10. 10.
    Kathiravan A, Renganathan R, Anandan S (2009) Interaction of colloidal AgTiO2 nanoparticles with bovine serum albumin. Polyhedron 28:157–161CrossRefGoogle Scholar
  11. 11.
    Kathiravan A, Renganathan R (2009) Photoinduced interactions between colloidal TiO2 nanoparticles and calf thymus-DNA. Polyhedron 28:1374–1378CrossRefGoogle Scholar
  12. 12.
    Tachikawa T, Majima T (2009) Single-molecule fluorescence imaging of TiO2 photocatalytic reactions. Langmuir 25:7791–7802PubMedCrossRefGoogle Scholar
  13. 13.
    Ma JN, Jiang LJ, Zhang MH, Yu Q (1989) Delayed fluorescence of hypocrellins and absorption spectra of isomers. Chin Sci Bull 34:1442–1448Google Scholar
  14. 14.
    Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  15. 15.
    Zhou J, Wu X, Gu X, Zhou L, Song K, Wei S, Feng Y, Shen J (2009) Spectroscopic studies on the interaction of hypocrellin A and haemoglobin. Spectrochim Acta 72:151–155CrossRefGoogle Scholar
  16. 16.
    Kamat PV (1985) Photoelectrochemistry in particulate systems. 3. Phototransformations in the colloidal titania-thiocyanate system. Langmuir 1:608–611CrossRefGoogle Scholar
  17. 17.
    Kamat PV, Chauvet JP, Fessenden RW (1986) Photoelectrochemistry in particulate systems. 4. Photosensitization of a titanium dioxide semiconductor with a chlorophyll analog. J Phys Chem 90:1389–1394CrossRefGoogle Scholar
  18. 18.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242PubMedCrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc, WallingfordGoogle Scholar
  20. 20.
    Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304PubMedCrossRefGoogle Scholar
  21. 21.
    Wu T, Xu S, Shen J, Chen S, Zhang M, Shen T (2000) Photosensitization of TiO2 colloid by hypocrellin B in ethanol. J Photochem Photobiol A Chem 137:191–196CrossRefGoogle Scholar
  22. 22.
    Rajh T, Chen LX, Lukas K, Liu T, Thurnauer MC, Tiede DM (2002) Surface restructuring of nanoparticles: an efficient route for ligand-metal oxide crosstalk. J Phys Chem B 106:10543–10552CrossRefGoogle Scholar
  23. 23.
    Kelly JM, Tossi AB, McConnell DJ, OhUigin C (1985) A study of the interactions of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucleic Acids Res 13:6017–6034PubMedCrossRefGoogle Scholar
  24. 24.
    Liu Z, Jiang M, Li Y, Wu Z, Yang J (2009) One-dimensional copper(II) polymer with bridging μ-trans-oxamidate and thiocyanate ligands: synthesis, crystal structure and DNA binding studies. Inorg Chim Acta 362:1253–1259CrossRefGoogle Scholar
  25. 25.
    Bazzicalupi C, Bencini A, Bianchi A, Biver T, Boggioni A, Bonacchi S, Danesi A, Giorgi C, Gratteri P, Ingra AM, Secco F, Sissi C, Valtancoli B, Venturini M (2008) DNA binding by a new metallointercalator that contains a proflavine group bearing a hanging chelating unit. Chem Eur J 14:184–196CrossRefGoogle Scholar
  26. 26.
    Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707CrossRefGoogle Scholar
  27. 27.
    Wang X, Zhang R, Wu C, Dai Y, Song M, Gutmann S, Gao F, Lv G, Li J, Li X, Guan Z, Fu D, Chen B (2007) The application of Fe3O4 nanoparticles in cancer research: a new strategy to inhibit drug resistance. J Biomed Mater Res A 80A:852–860CrossRefGoogle Scholar
  28. 28.
    Bi S, Qiao C, Song D, Tian Y, Gao D, Sun Y, Zhang H (2006) Study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe. Sens Actuators B 119:199–208CrossRefGoogle Scholar
  29. 29.
    Saquib Q, Al-Khedhairy AA, Alarifi SA, Dutta S, Dasgupta S, Musarrat J (2010) Methyl thiophanate as a DNA minor groove binder produces MT–Cu(II)–DNA ternary complex preferably with AT rich region for initiation of DNA damage. Int J Biol Macromol 47:68–75PubMedCrossRefGoogle Scholar
  30. 30.
    Bera R, Sahoo BK, Ghosh S, Dasgupta S (2008) Studies on the interaction of isoxazolcurcumin with calf thymus DNA. Int J Biol Macromol 42:14–21PubMedCrossRefGoogle Scholar
  31. 31.
    Zsila F, Bikádi Z, Simonyi M (2004) Circular dichroism spectroscopic studies reveal pH dependent binding of curcumin in the minor groove of natural and synthetic nucleic acids. Org Biomol Chem 2:2902–2910PubMedCrossRefGoogle Scholar
  32. 32.
    Das S, Kumar GS (2008) Molecular aspects on the interaction of phenosafranine to deoxyribonucleic acid: model for intercalative drug–DNA binding. J Mol Struct 872:56–63CrossRefGoogle Scholar
  33. 33.
    Sun W, Du Y, Chen J, Kou J, Yu B (2009) Interaction between titanium dioxide nanoparticles and human serum albumin revealed by fluorescence spectroscopy in the absence of photoactivation. J Lumin 129:778–783CrossRefGoogle Scholar
  34. 34.
    Lakowicz R (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science + Business Media, New York, p 281, Chapter 8CrossRefGoogle Scholar
  35. 35.
    Xu S, Shen J, Chen S, Zhang M, Shen T (2002) Active oxygen species (1O2, O2−) generation in the system of TiO2 colloid sensitized by hypocrellin B. J Photochem Photobiol B 67:64–70PubMedCrossRefGoogle Scholar
  36. 36.
    Weng M, Zhang M, Wang W, Shen T (1997) Investigation of triplet states and radical anions produced by laser photoexcitation of hypocrellins. J Chem Soc Faraday Trans 93:3491–3495CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ganesan Paramaguru
    • 1
  • Rajadurai Vijay Solomon
    • 1
  • Ponnambalam Venuvanalingam
    • 1
  • Rajalingam Renganathan
    • 1
  1. 1.School of ChemistryBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations