Advertisement

Journal of Fluorescence

, Volume 21, Issue 4, pp 1479–1484 | Cite as

Shifting of Fluorescence Peak in CdS Nanoparticles by Excitation Wavelength Change

  • S. MathewEmail author
  • Santhi Ani Joseph
  • P. Radhakrishnan
  • V. P. N. Nampoori
  • C. P. G. Vallabhan
Original Paper

Abstract

CdS nanoparticles with different size are prepared by chemical bath deposition method. These particles show strong fluorescence at emission wavelength of 507 nm. It has been observed that this emission peak changes through a range of 147 nm, by varying the excitation wavelengths through 370–480 nm.The emission peak can thus be tuned by varying the excitation wavelengths. This peak emission wavelength shift is due to the selective excitation of vibronic levels in the surface state of the CdS nanoparticles.

Keywords

Nanoparticles Optical absorption Fluorescence 

PACS Code

78.67.Bf 78.40.-q 81.07.-b 

Notes

Acknowledgments

MS acknowledges CELOS (funded by UGC- Govt. of India) for research fellowship. SAJ is thankful to UGC for financial assistance. The authors are grateful to CELOS for the experimental facilities.

Reference

  1. 1.
    Tittel J, Gohde W, Koberling F, Basche Th, Kornowski A, Weller H, Eychmuller A (1997) J Phys Chem B 101(16):3013–3016CrossRefGoogle Scholar
  2. 2.
    Arora S, Sundar Manoharan S (2007) J Phys Chem Solids 68:1897–1901CrossRefGoogle Scholar
  3. 3.
    Arora S, Sundar Manoharan S (2007) Solid State Commun 144:319–323CrossRefGoogle Scholar
  4. 4.
    Alivisatos AP (1996) Science 271:933CrossRefGoogle Scholar
  5. 5.
    De Farias PMA, Santos BS, Menezes FD, Brasil AG Jr, Ferreira R (2007) Appl Phys A 89:957–961CrossRefGoogle Scholar
  6. 6.
    Deshmukh NV, Bhave TM, Ethiraj AS, Sainkar SR, Ganesan V, Bhoraskar SV, Kulkarni SK (2001) Nanotechnology 12:290–294CrossRefGoogle Scholar
  7. 7.
    He J, Ji W, Ma GH, Tang SH, Elim HI, Sun WX (2004) J Appl Phys 95(11):6381–6386CrossRefGoogle Scholar
  8. 8.
    Rossetti R, Ellison JL, Gibson JM, Brus LE (1983) J Chem Phys 79:5566CrossRefGoogle Scholar
  9. 9.
    Ma G, Tang S-H, Sun W, Shen Z, Huang W, Shi J (2002) Phys Lett A 299:581–585CrossRefGoogle Scholar
  10. 10.
    Lakowicz JR, Gryczynski I, Gryczynski Z, Murphy CJ (1999) J Phys Chem B 103:7613CrossRefGoogle Scholar
  11. 11.
    Irimpan L, Krishnan B, Deepthy A, Nampoori VPN, Radhakrishnan P (2007) J Phys D: Appl Phys 40:5670–5674CrossRefGoogle Scholar
  12. 12.
    Lincot D, Ortega-Borges R, Froment M (1994) Appl Phys Lett 64(5):31CrossRefGoogle Scholar
  13. 13.
    Raji P, Sanjeevraja C, Ramachandran K (2004) Crys Res Technol 39(7):617–622CrossRefGoogle Scholar
  14. 14.
    Jian-Xi Zhao Y, Gao-Ling, Gao-Rong H (2003) Microelectron Eng 66:115–120CrossRefGoogle Scholar
  15. 15.
    Pattabi M, Saraswathi Amma B, Manzoor K (2007) Mater Res Bull 42:828–835CrossRefGoogle Scholar
  16. 16.
    Takeuchi S, Suzuki K (1999) Phys Status Solidi A 171:99CrossRefGoogle Scholar
  17. 17.
    Yao J (2003) J Mater Sci Lett 22:1491–1493CrossRefGoogle Scholar
  18. 18.
    Fernandez JRL, de Souza-Parise M, Morais PC (2007) Surf Sci 601:3805–3808CrossRefGoogle Scholar
  19. 19.
    Li Y, Huang F, Zhang Q, Gu Z (2000) J Mater Sci 35:5933–5937CrossRefGoogle Scholar
  20. 20.
    Zou B-S, Wu Z-Y, Cao L, Dai J-H, Zhang Z-B, Nie Y-X, Xie S-S (2001) Chin Phys Lett 18(9):1275CrossRefGoogle Scholar
  21. 21.
    Chestnoy N, Harris TD, Hull R, Brus LE (1986) J Phys Chem 90:3393–3399CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Mathew
    • 1
    • 2
    Email author
  • Santhi Ani Joseph
    • 1
  • P. Radhakrishnan
    • 1
    • 2
  • V. P. N. Nampoori
    • 1
  • C. P. G. Vallabhan
    • 1
  1. 1.International School of PhotonicsCochin University of Science and TechnologyKochiIndia
  2. 2.Centre of Excellence in Lasers and Optoelectronics SciencesCochin University of Science and TechnologyKochiIndia

Personalised recommendations