Journal of Fluorescence

, Volume 21, Issue 4, pp 1365–1370 | Cite as

Fluorescence Imaging of Stem Cells, Cancer Cells and Semi-Thin Sections of Tissues using Silica-Coated CdSe Quantum Dots

  • M. Vibin
  • R. Vinayakan
  • Annie John
  • V. Raji
  • C. S. Rejiya
  • Annie AbrahamEmail author
Original Paper


Trioctylphosphine oxide capped cadmium selenide quantum dots, synthesized in organic media were rendered water soluble by silica overcoating. Silanisation was done by a simple reverse microemulsion method using aminopropyl silane as the silica precursor. Further, the strong photoluminescence of the silica-coated CdSe quantum dots has been utilized to visualize rabbit adipose tissue-derived mesenchymal stem cells (RADMSCs) and Daltons lymphoma ascites (DLA) cancerous cells in vitro. Subsequently the in vivo fluorescence behaviours of QDs in the tissues were also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence microscopic images in the stem cells, cancer cells and semi-thin sections of mice organs proved the strong luminescence property of silica-coated quantum dots under biological systems. These results establish silica-coated CdSe QDs as extremely useful tools for molecular imaging and cell tracking to study the cell division and metastasis of cancer and other diseases.


DLA cells Luminescence Quantum dots RADMSCs Semi-thin section 



We gratefully acknowledge the Department of Biotechnology, Ministry of Science and Technology, Govt. of India, New Delhi, for the financial assistance as research grant (Order No.BT/PR9904/ NNT/28/63/2007) given to Dr. Annie Abraham, Principal Investigator, DBT project; Dr. K. George Thomas, Scientist, National Institute of Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, India for supplying nanomaterials; UGC, Govt. of India for the research fellowship to Vinayakan R.


  1. 1.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  2. 2.
    Jaiswal JK, Mattoussi H, Mauro JM Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–33PubMedCrossRefGoogle Scholar
  3. 3.
    Lidke DS, Nagy P, Heintzmann R, Jovin DJA, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor mediated signal transduction. Nat Biotechnol 22(2):198–203PubMedCrossRefGoogle Scholar
  4. 4.
    Bonasio R, Carman CV, Kim E, Sage PT, Love KR, Mempel TR, Springer TA, von Andrian UH (2007) Specific and covalent labeling of a membrane protein with organic fluorochromes and Quantum dots. Proc Natl Acad Sci USA 104(37):14753–14758PubMedCrossRefGoogle Scholar
  5. 5.
    Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D, Micheel CM, Williams SC, Alivisatos AP, Larabell C (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14(12):882–885CrossRefGoogle Scholar
  6. 6.
    Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, Yamamoto K (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302(3):496–501PubMedCrossRefGoogle Scholar
  7. 7.
    Soltesz EG, Kim S, Kim SW, Laurence RG, De Grand AM, Parungo CP, Cohn LH, Bawendi MG, Frangioni JV (2006) Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 13:386–396PubMedCrossRefGoogle Scholar
  8. 8.
    Parungo CP, Colson YL, Kim SW Kim S, Cohn LH, Bawendi MG, Frangioni JV (2005) Sentinel lymph node mapping of the pleural space. Chest 127:1799–1804PubMedCrossRefGoogle Scholar
  9. 9.
    Soltesz EG, Kim S, Laurence RG, DeGrand AM, Parungo CP, Dor DM, Cohn LH, Bawendi MG, Frangioni JV, Mihaljevic T (2005) Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent Quantum dots. Ann Thorac Surg 79:269–277PubMedCrossRefGoogle Scholar
  10. 10.
    Parungo CP, Ohnishi S, Kim SW, Kim S, Laurence RG, Soltesz EG, Chen FY, Colson YL, Cohn LH, Bawendi MG, Frangioni JV (2005) Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 129:844–850PubMedCrossRefGoogle Scholar
  11. 11.
    Tanaka E, Choi HS, Fujii H, Bawendi MG, Frangioni JV (2006) Image- guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol 13:1671–1681PubMedCrossRefGoogle Scholar
  12. 12.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II Quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97PubMedCrossRefGoogle Scholar
  13. 13.
    Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CA, Urano Y, Choyke PL (2007) Simultaneous multi- color imaging of five different lymphatic basins using quantum dots. Nano Lett 7:1711–1716PubMedCrossRefGoogle Scholar
  14. 14.
    Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H (2007) Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res Treat 103:23–28PubMedCrossRefGoogle Scholar
  15. 15.
    Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JA, Waggoner AS, Bruchez MP (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18:389–396PubMedCrossRefGoogle Scholar
  16. 16.
    Knapp DW, Adams LG, Degrand AM, Niles JD, Ramos-Vara JA, Weil AB, O’Donnell MA, Lucroy MD, Frangioni JV (2007) Sentinel lymph node mapping of invasive urinary bladder cancer in animal models using invisible light. Eur Urol 52:1700–1708PubMedCrossRefGoogle Scholar
  17. 17.
    Peng XA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184PubMedCrossRefGoogle Scholar
  18. 18.
    Vinayakan R, Shanmugapriya T, Nair PV, Ramamurthy P, Thomas KG (2007) An approach for optimizing the shell thickness of core-shell quantum dots using photoinduced charge transfer. J Phys Chem C 111:10146–10149CrossRefGoogle Scholar
  19. 19.
    Selvan ST, Patra PK, Ang CY, Ying JY (2007) Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed 46:2448–2452CrossRefGoogle Scholar
  20. 20.
    Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976PubMedCrossRefGoogle Scholar
  21. 21.
    Gu W, Pellegrino T, Parak WJ, Boudreau R, Le Gros MA, Alivisatos AP, Larabell CA (2007) Measuring cell motility using quantum dot probes. Methods Mol Bio 374:125–132Google Scholar
  22. 22.
    Pic E, Pons T, Bezdetnaya L, Leroux A, Guillemin F, Dubertret B, Marcha F (2009) Fluorescence imaging and whole-body biodistribution of near-infrared-emitting quantum dots after subcutaneous injection for regional lymph node mapping in mice. Mol Imaging Biol 12:394–405PubMedCrossRefGoogle Scholar
  23. 23.
    Vibin M, Vinayakan R, John A, Raji V, Rejiya CS, Abraham A (2010) Biokinetics and in vivo distribution behaviours of silica-coated cadmium selenide quantum dots. Biol Trace Elem Res. doi: 10.1007/s12011-010-8763-5 [Epub ahead of print]PubMedGoogle Scholar
  24. 24.
    Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, non-toxic imaging and nuclear targeting in living cells. Nano Lett 4:1827–1832CrossRefGoogle Scholar
  25. 25.
    Han R, Yu M, Zheng Q, Wang L, Hong Y, Sha Y (2009) A facile synthesis of small-sized, highly photoluminescent, and monodisperse CdSeS QD/SiO2 for live cell imaging. Langmuir 25:12250–12255PubMedCrossRefGoogle Scholar
  26. 26.
    Bakalova R, Zhelev Z, Aoki I, Ohba H, Imai Y, Kanno I (2006) Silica-shelled single quantum dot micelles as imaging probes with dual or multimodality. Anal Chem 78:5925–5932PubMedCrossRefGoogle Scholar
  27. 27.
    Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2:50–64PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Vibin
    • 1
  • R. Vinayakan
    • 2
  • Annie John
    • 3
  • V. Raji
    • 1
  • C. S. Rejiya
    • 1
  • Annie Abraham
    • 1
    Email author
  1. 1.Department of BiochemistryUniversity of KeralaKeralaIndia
  2. 2.Photosciences and Photonics, National Institute for Interdisciplinary Science and Technology (CSIR)KeralaIndia
  3. 3.Sree Chitra Tirunal Institute of Medical Sciences and TechnologyBiomedical Technology WingKeralaIndia

Personalised recommendations