Journal of Fluorescence

, Volume 21, Issue 2, pp 539–543

Strong Photoluminescence Enhancement from Colloidal Quantum Dot Near Silver Nano-Island Films

  • Hagen Langhuth
  • Simon Frédérick
  • Michael Kaniber
  • Jonathan J. Finley
  • Ulrich Rührmair
Original Paper

Abstract

We present the fabrication and optical investigation of highly random self-assembled, nano-scale films, probing their influence on the luminescence properties of near surface CdSe/ZnS colloidal quantum dots. When compared to quantum dots distributed on unstructured quartz substrates, the average luminescence intensity is found to be enhanced by a factor of 160×. The silver nanoparticles are prepared using slow thermal evaporation on quartz substrates and post-deposition annealing to produce a randomly-arranged layer of smooth nano-islands. Clear polarization dependent hot spots are observed. Such hot spots deliver a maximal enhancement of the emission intensity of 240× and have a spatial density of (0.050±0.002) μm − 2. The results show that silver nano-island films strongly enhance the optical efficiency of near quantum dots emitters.

Keywords

Quantum dots Silver nano-islands Self-assembled films Plasmonic hot spots Surface sensing 

References

  1. 1.
    Ferry VE, Verschuuren MA, Li HBT, Schropp REI, Atwater HA, Polman A (2009) Improved red-response in thing film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Appl Phys Lett 95:183503CrossRefGoogle Scholar
  2. 2.
    Shen H, Bienstman P, Maes B (2009) Plasmonic absorption enhancement in organic solar cells with thin active layers. J Appl Phys 106:073109CrossRefGoogle Scholar
  3. 3.
    Hugall JT, Baumberg JJ, Mahajan S (2009) Surface-enhanced raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces. Appl Phys Lett 95:141111CrossRefGoogle Scholar
  4. 4.
    Pompa PP, Martiradonna L, Della Sala A, Manina L, De Vittorio M, Calabi F, Cingolani R, Rinaldi R (2006) Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale and control. Nature Nanotechnology 1:126PubMedCrossRefGoogle Scholar
  5. 5.
    Ozel T, Soganci IM, Nizamoglu S, Huyal IO, Mutlugun E, Sapra S, Gaponik N, Eychmüller A, Demir HV (2008) Selective enhancement of surface-state emission and simulataneous quenching of interband transition in white-luminophor cds nanocrystals using localized plasmon coupling. New J Phys 10:083035CrossRefGoogle Scholar
  6. 6.
    Soganci IM, Nizamoglu S, Mutlugun E, Akin O, Demir HV (2007) Localized plasmon-engineered spontaneous emission of cdse/zns nanocrystals closely-packed in the proximity of ag nanoisland films for controlling emission linewidth, peak, and intensity. Opt Express 15:14289PubMedCrossRefGoogle Scholar
  7. 7.
    Banerjee R, Hazra S, Banerjee S, Sanyal MK (2009) Nanopattern formation in self-assembled monolayers of thiol-capped au nanocrystals. Phys Rev E 80:056204CrossRefGoogle Scholar
  8. 8.
    Aslan K, Malyn SN, Zhang Y, Geddes CD (2008) Conversion of just-continuous metallix films to large particulate substrates for metal-enhanced fluorescence. J Appl Phys 103:084307CrossRefGoogle Scholar
  9. 9.
    Beck FJ, Polman A, Catchpole KR (2009) Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys 105:114310CrossRefGoogle Scholar
  10. 10.
    Komarala VK, Bradley AL, Rakovich YP, Byrne SJ, Gun’ko YK, Rogach AL (2008) Surface plasmon enhanced Förster resonance energy transfer between the cdte quantum dots. Appl Phys Lett 93:123102CrossRefGoogle Scholar
  11. 11.
    Borys NJ, Walter MJ, Lupton JM (2009) Intermittency in second-harmonic generation radiation from plasmonic hot spots on rough silver film. Phys Rev B 80:161407(R)CrossRefGoogle Scholar
  12. 12.
    Fu Y, Zhang J, Lakowicz JR (2007) Suppressed blinking in single quantum dots (QDs) immobilized near silver island films (SIFs). Chem Phys Lett 447:96PubMedCrossRefGoogle Scholar
  13. 13.
    Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K (2008) Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133:1308PubMedCrossRefGoogle Scholar
  14. 14.
    Komarala VK, Rakovich YP, Bradley AL, Byrne SJ, Gun’ko YK (2006) Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Appl Phys Lett 89:253118CrossRefGoogle Scholar
  15. 15.
    Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113CrossRefGoogle Scholar
  16. 16.
    Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silvernanoclusters. Science 291:103PubMedCrossRefGoogle Scholar
  17. 17.
    Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar TA, Feldmann J (2008) Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett 100:203002PubMedCrossRefGoogle Scholar
  18. 18.
    Muskens OL, Giannini V, Sánchez-Gil JA, Gómez Rivas J (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nanoletters 7:2871Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hagen Langhuth
    • 1
  • Simon Frédérick
    • 1
  • Michael Kaniber
    • 1
  • Jonathan J. Finley
    • 1
  • Ulrich Rührmair
    • 2
  1. 1.Walter Schottky InstitutTechnische Universität MünchenGarching bei MünchenGermany
  2. 2.Institut für InformatikTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations