Journal of Fluorescence

, Volume 21, Issue 1, pp 299–312 | Cite as

Simultaneous pH and Temperature Measurements Using Pyranine as a Molecular Probe

  • Felix H. C. Wong
  • Cécile FradinEmail author
Original Paper


Steep variations in concentration and temperature frequently occur in small fluid compartments such as those found in cells or microfluidic devices. A quantitative characterization of concentration and temperature gradients is therefore required before these systems can be fully understood. Although different spatially resolved fluorescence methods have been developed to measure either the temperature or the concentration of ions such as proton or calcium, often concentration measurements depend on temperature and vice versa. Here, we describe a method allowing simultaneous measurement of pH and temperature. This method is based on the detection of the blinking of the fluorescent pH indicator pyranine, a process due to its alternating between a basic form and an acidic form. Fluorescence correlation spectroscopy allows measuring both the protonation and deprotonation rates of pyranine, and each pair of rates can be uniquely related to a pair of pH and temperature values. We show, however, that the relationship between rates, pH and temperature, is very sensitive to the presence of other acid-base molecules in solution. We also show that it is influenced by the overall ionic strength of the solution, in a manner that depends on buffer composition.


Fluorescence Fluorescence correlation spectroscopy Protonation Photophysics Ionic strength Pyranine 


  1. 1.
    Li Jeon N, Baskaran H, Dertinger SK, Whitesides GM, Van de Water L, Toner M (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830PubMedGoogle Scholar
  2. 2.
    Jeon SM, Turner J, Granick S (2003) Noncontact temperature measurement in microliter-sized volumes using fluorescent-labeled DNA oligomers. J Am Chem Soc 125(33):9908–9909CrossRefPubMedGoogle Scholar
  3. 3.
    Ross D, Gaitan M, Locascio LE (2001) Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal Chem 73(17):4117–4123CrossRefPubMedGoogle Scholar
  4. 4.
    Erickson D, Sinton D, Li DQ (2003) Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Lab Chip 3(3):141–149CrossRefPubMedGoogle Scholar
  5. 5.
    Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058CrossRefPubMedGoogle Scholar
  6. 6.
    Kholodenko BN (2009) Spatially distributed cell signalling. FEBS Lett 583(24):4006–4012CrossRefPubMedGoogle Scholar
  7. 7.
    Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404(6778):652–660PubMedGoogle Scholar
  8. 8.
    Straubinger RM, Papahadjopoulos D, Hong K (1990) Endocytosis and intracellular fate of liposomes using pyranine as a probe. Biochem 29(20):4929–4939CrossRefGoogle Scholar
  9. 9.
    Overly CC, Lee KD, Berthiaume E, Hollenbeck PJ (1995) Quantitative measurement of intraorganelle pH in the endosomal lysosomal pathway in neurons by using ratiometric imaging with pyranine. PNAS USA 92(8):3156–3160CrossRefPubMedGoogle Scholar
  10. 10.
    Krueger KM, Daaka Y, Pitcher JA, Lefkowitz RJ (1997) The role of sequestration in G protein-coupled receptor resensitization—Regulation of beta(2)-adrenergic receptor dephosphorylation by vesicular acidification. J Biol Chem 272(1):5–8CrossRefPubMedGoogle Scholar
  11. 11.
    Nakamura T, Matsuoka I (1978) Calorimetric studies of heat of respiration of mitochondria. J Biochem 84(1):39–46PubMedGoogle Scholar
  12. 12.
    Suzuki M, Tseeb V, Oyama K, Ishiwata S (2007) Microscopic detection of thermogenesis in a single HeLa cell. Biophys J 92(6):L46–48CrossRefPubMedGoogle Scholar
  13. 13.
    Rink TJ, Tsien RY, Pozzan T (1982) Cytoplasmic Ph and free Mg-2+ in lymphocytes. J Cell Biol 95(1):189–196CrossRefPubMedGoogle Scholar
  14. 14.
    Kato H, Nishizaka T, Iga T, Kinosita K, Ishiwata S (1999) Imaging of thermal activation of actomyosin motors. PNAS USA 96(17):9602–9606CrossRefPubMedGoogle Scholar
  15. 15.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450PubMedGoogle Scholar
  16. 16.
    Willoughby D, Thomas RC, Schwiening CJ (1998) Comparison of simultaneous pH measurements made with 8-hydroxypyrene-1, 3, 6-trisulphonic acid (HPTS) and pit-sensitive microelectrodes in snail neurones. Pflugers Archiv-Europ J Phys 436(4):615–622CrossRefGoogle Scholar
  17. 17.
    Herman P, Drapalova H, Muzikova R, Vecer J (2005) Electroporative adjustment of pH in living yeast cells: ratiometric fluorescence pH imaging. J Fluoresc 15(5):763–768CrossRefPubMedGoogle Scholar
  18. 18.
    Ito S, Sugiyama T, Toitani N, Katayama G, Miyasaka H (2007) Application of fluorescence correlation spectroscopy to the measurement of local temperature in solutions under optical trapping condition. J Phys Chem B 111(9):2365–2371CrossRefPubMedGoogle Scholar
  19. 19.
    Sanders R, Draaijer A, Gerritsen HC, Houpt PM, Levine YK (1995) Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal Biochem 227(2):302–308CrossRefPubMedGoogle Scholar
  20. 20.
    Widengren J, Terry B, Rigler R (1999) Protonation kinetics of GFP and FITC investigated by FCS—aspects of the use of fluorescent indicators for measuring pH. Chem Phys 249(2–3):259–271CrossRefGoogle Scholar
  21. 21.
    Hess ST, Heikal AA, Webb WW (2004) Fluorescence photoconversion kinetics in novel green fluorescent protein pH sensors (pHluorins). J Phys Chem B 108(28):10138–10148CrossRefGoogle Scholar
  22. 22.
    Wong FHC, Banks DS, Abu-Arish A, Fradin C (2007) A molecular thermometer based on fluorescent protein blinking. J Am Chem Soc 129(34):10302–10303CrossRefPubMedGoogle Scholar
  23. 23.
    Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. PNAS USA 95(23):13573–13578CrossRefPubMedGoogle Scholar
  24. 24.
    Wolfbeis OS, Furlinger E, Kroneis H, Marsoner H (1983) Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (Physiological) pH-values. Fres Zeit Anal Chem 314(2):119–124CrossRefGoogle Scholar
  25. 25.
    Kano K, Fendler JH (1978) Pyranine as a sensitive Ph probe for liposome interiors and surfaces—pH gradients across phospholipid vesicles. Biochim Biophys Acta 509(2):289–299CrossRefPubMedGoogle Scholar
  26. 26.
    Huppert D, Kolodney E, Gutman M, Nachliel E (1982) Effect of water activity on the rate of proton dissociation. J Am Chem Soc 104(25):6949–6953CrossRefGoogle Scholar
  27. 27.
    Pines E, Huppert D, Agmon N (1991) Salt effects on steady-state quantum yields of ultrafast, diffusion-influenced, reversible photoacid dissociation reactions. J Phys Chem 95(2):666–674CrossRefGoogle Scholar
  28. 28.
    Rini M, Magnes BZ, Pines E, Nibbering ETJ (2003) Real-time observation of bimodal proton transfer in acid-base pairs in water. Science 301(5631):349–352CrossRefPubMedGoogle Scholar
  29. 29.
    Rini M, Pines D, Magnes BZ, Pines E, Nibbering ETJ (2004) Bimodal proton transfer in acid-base reactions in water. J Chem Phys 121(19):9593–9610CrossRefPubMedGoogle Scholar
  30. 30.
    Mohammed OF, Pines D, Dreyer J, Pines E, Nibbering ETJ (2005) Sequential proton transfer through water bridges in acid-base reactions. Science 310(5745):83–86CrossRefPubMedGoogle Scholar
  31. 31.
    Cox MJ, Bakker HJ (2008) Parallel proton transfer pathways in aqueous acid-base reactions. J Chem Phys 128(17):174501CrossRefPubMedGoogle Scholar
  32. 32.
    Cox MJ, Siwick BJ, Bakker HJ (2009) Influence of ions on aqueous acid-base reactions. Chemphyschem 10(1):236–244CrossRefPubMedGoogle Scholar
  33. 33.
    Stellwagen E, Prantner JD, Stellwagen NC (2008) Do zwitterions contribute to the ionic strength of a solution? Anal Biochem 373(2):407–409CrossRefPubMedGoogle Scholar
  34. 34.
    Banks DS, Fradin C (2005) Anomalous diffusion of proteins due to molecular crowding. Biophys J 89(5):2960–2971CrossRefPubMedGoogle Scholar
  35. 35.
    Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94(4):1437–1448CrossRefPubMedGoogle Scholar
  36. 36.
    Magde D, Webb WW, Elson EL (1978) Fluorescence correlation spectroscopy. 3. Uniform translation and laminar-flow. Biopolymers 17(2):361–376CrossRefGoogle Scholar
  37. 37.
    Satsoura D, Leber B, Andrews DW, Fradin C (2007) Circumvention of fluorophore photobleaching in fluorescence fluctuation experiments: a beam scanning approach. Chemphyschem 8(6):834–848CrossRefPubMedGoogle Scholar
  38. 38.
    Avnir Y, Barenholz Y (2005) pH determination by pyranine: medium-related artifacts and their correction. Anal Biochem 347(1):34–41CrossRefPubMedGoogle Scholar
  39. 39.
    Boens N, Qin WW, Basaric N, Orte A, Talavera EM, Alvarez-Pez JM (2006) Photophysics of the fluorescent pH indicator BCECF. J Phys Chem A 110(30):9334–9343CrossRefPubMedGoogle Scholar
  40. 40.
    Ross A, Kearney JN (2004) The measurement of water activity in allogeneic skin grafts preserved using high concentration glycerol or propylene glycol. Cell Tissue Banking 5(1):37–44CrossRefGoogle Scholar
  41. 41.
    Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Physics and AstronomyMcMaster UniversityHamiltonCanada
  2. 2.HamiltonCanada

Personalised recommendations