Journal of Fluorescence

, Volume 20, Issue 6, pp 1307–1313 | Cite as

A Highly Selective Fluorescent Probe for Detection of Biological Samples Thiol and Its Application in Living Cells

  • Qing-Ping Zuo
  • Bing Li
  • Qi Pei
  • Zuojun Li
  • Shi-Kun Liu
Short Communication

Abstract

Probe 1 was designed and synthesized as a new fluorescent molecular probe for thiols in PBS buffer at physiological condition. This fluorescent molecular probe consists of a thiol reaction moiety bound to a coumarin fluorophore. Its fluorescence quantum yield is low, but a drastic enhancement of fluorescence intensity was observed in the presence of thiols. Possible interference with other analytes was examined. Probe 1 displays a highly selective fluorescent enhancement with thiols, and the probe was successfully applied to thiols determination in intracellular, in human urine and blood samples.

Keywords

Fluorescence Thiols Sensing Fluorescent probe 

Notes

Acknowledgements

This work was supported by the Science Research Foundation of Central South University.

References

  1. 1.
    Zhang SY, Ong CN, Shen HM (2004) Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett 208:143–153. doi: 10.1016/j.canlet.2003.11.028 CrossRefPubMedGoogle Scholar
  2. 2.
    Wang H, Wang WS, Zhang HS (2001) A spectrofluorimetric method for cysteine and glutathione using the fluorescence system of Zn(II)-8-hydroxyquinoline-5-sulphonic acid complex. Spectrochim Acta Part A 57:2403–2407. doi: 10.1016/S1386-1425(01)00429-2 CrossRefGoogle Scholar
  3. 3.
    Kizek R, Vacek J, Trnkova L, Jelen F (2004) Cyclic voltammetric study of the redox system of glutathione using the disulfide bond reductant tris(2-carboxyethyl)phosphine. Bioelectrochemistry 63:19–24. doi: 10.1016/j.bioelechem.2003.12.001 CrossRefPubMedGoogle Scholar
  4. 4.
    \Schulz JB B, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911. doi: 10.1046/j.1432-1327.2000.01595.x CrossRefPubMedGoogle Scholar
  5. 5.
    Ball RO, Courtney-Martin G, Pencharz PB (2006) The in vivo sparing of methionine by cysteine in sulfur amino acid requirements in animal models and adult humans. J Nutr 136:1682S–1693SPubMedGoogle Scholar
  6. 6.
    Shahrokhian S (2001) Lead phthalocyanine as a selective carrier for preparation of a cysteine- selective electrode. Anal Chem 73:5972–5978. doi: 10.1021/ac010541m CrossRefPubMedGoogle Scholar
  7. 7.
    Heafield MT, Fearn S, Steventon GB, Waring RH, Williams AC, Sturman SG (1990) Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson’s and Alzheimer’s disease. Neurosci Lett 110:216–220. doi: 10.1016/0304-3940(90)90814-P CrossRefPubMedGoogle Scholar
  8. 8.
    Sofia C, Chadefaux B, Coude M, Oaillard O, Kamoun E (1990) Concentrations of total homocysteine in plasma in chronic renal failure. Clin Chem 36:2137–2138Google Scholar
  9. 9.
    Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset E (1997) Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 337:230–236CrossRefPubMedGoogle Scholar
  10. 10.
    Jacobsen DW (1998) Homocysteine and vitamins in cardiovascular disease. Clin Chem 44:1833–1843PubMedGoogle Scholar
  11. 11.
    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483. doi: 10.1016/S1062-1458(02)00690-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Komuro C, Ono K, Shibamoto Y, Nishidai T, Takahashi M, Abe M (1985) Rapid and simple method for quantitative determination of non-protein sulphydryls in mouse liver by reversed-phase high-performance liquid chromatography. J Chromatogr 338:209–212CrossRefPubMedGoogle Scholar
  13. 13.
    Chen W, Zhao Y, Seefeldt T, Guan X (2008) Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. J Pharm Biomed Anal 48:1375–1380. doi: 10.1016/j.jpba.2008.08.033 CrossRefPubMedGoogle Scholar
  14. 14.
    Inoue T, Kirchhoff JR (2000) Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode. Anal Chem 72:5755–5760. doi: 10.1021/ac000716c CrossRefPubMedGoogle Scholar
  15. 15.
    Zinellu A, Sotgia S, Scanu B, Usai MF, Fois AG, Spada V, Deledda A, Deiana L, Pirina P, Carru C (2009) Simultaneous detection of N-acetyl-l-cysteine and physiological low molecular mass thiols in plasma by capillary electrophoresis. Amino Acids 37:395–400. doi: 10.1007/s00726-008-0167-x CrossRefPubMedGoogle Scholar
  16. 16.
    Amarnath K, Amarnath V, Amarnath K, Valentine HL, Valentine WM (2003) A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples. Talanta 60:1229–1238. doi: 10.1016/S0039-9140(03)00232-7 CrossRefPubMedGoogle Scholar
  17. 17.
    Wen M, Liu H, Zhang F, Zhu Y, Liu D, Tian Y, Wu Q (2009) Amorphous FeNiPt nanoparticles with tunable length for electrocatalysis and electrochemical determination of thiols. Chem Commun (Camb) 30:4530–4532. doi: 10.1039/b907379e CrossRefGoogle Scholar
  18. 18.
    Duan L, Xu Y, Qian X, Wang F, Liu J, Cheng T (2008) Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage: symmetrical naphthalimide aldehyde. Tetrahedron Lett 49:6624–6627. doi: 10.1016/j.tetlet.2008.09.021 CrossRefGoogle Scholar
  19. 19.
    Shibata A, Furukawa K, Abe H, Tsuneda S, Ito Y (2008) Rhodamine-based fluorogenic probe for imaging biological thiol. Bioorg Med Chem Lett 18:2246–2249. doi: 10.1016/j.bmcl.2008.03.014 CrossRefPubMedGoogle Scholar
  20. 20.
    Matsumoto T, Urano Y, Shoda T, Kojima H, Nagano T (2007) A thiol-reactive fluorescence probe based on donor-excited photoinduced electron transfer: key role of ortho substitution. Org Lett 9:3375–3377. doi: 10.1021/ol071352e CrossRefPubMedGoogle Scholar
  21. 21.
    Piggott AM, Karuso P (2007) Fluorometric assay for the determination of glutathione reductase activity. Anal Chem 79:8769–8773. doi: 10.1021/ac071518p CrossRefPubMedGoogle Scholar
  22. 22.
    Bouffard J, Kim Y, Swager TM, Weissleder R, Hilderbrand SA (2008) A highly selective fluorescent probe for thiol bioimaging. Org Lett 10:37–40. doi: 10.1021/ol702539v CrossRefPubMedGoogle Scholar
  23. 23.
    Huanga ST, Ting KN, Wang KL (2008) Development of a long-wavelength fluorescent probe based on quinine-methide-type reaction to detect physiologically significant thiols. Anal Chim Acta 620:120–126. doi: 10.1016/j.aca.2008.05.006 CrossRefGoogle Scholar
  24. 24.
    Fu YY, Li HX, Hu WP, Zhu DB (2005) Fluorescence probes for thiol-containing amino acids and peptides in aqueous solution. Chem Commun (Camb) 3189–3191. doi: 10.1039/b503772g
  25. 25.
    Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N (2005) 2, 4-dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman’s reagent in thiol-quantification enzyme assays. Angew Chem Int Ed 44:2922–2925. doi: 10.1002/ange.200500114 CrossRefGoogle Scholar
  26. 26.
    Zhang M, Li M, Zhao Q, Li FY, Zhang DQ, Zhang JP, Yi T, Huang CH (2007) Novel Y-type two-photon active fluorophore: synthesis and application in fluorescent sensor for cysteine and homocysteine. Tetrahedron Lett 48:2329–2333. doi: 10.1016/j.tetlet.2007.01.158 CrossRefGoogle Scholar
  27. 27.
    Chow CF, Chiu BKW, Lam MHW, Wong WY (2003) A trinuclear heterobimetallic Ru(II)/Pt(II) complex as a chemodosimeter selective for sulfhydryl-containing amino acids and peptides. J Am Chem Soc 125:7802–7803. doi: 10.1021/ja034891x CrossRefPubMedGoogle Scholar
  28. 28.
    Tanaka F, Mase N, Barbas CF (2004) Determination of cysteine concentration by fluorescence increase: reaction of cysteine with a fluorogenic aldehyde. Chem Commun (Camb) 1762-1763. doi: 10.1039/b405642f
  29. 29.
    Wang L, Yang XF, Zhao M (2009) A 4-methylumbelliferone-based fluorescent probe for the sensitive detection of captopril. J Fluoresc 19:593–599. doi: 10.1007/s10895-008-0449-4 CrossRefPubMedGoogle Scholar
  30. 30.
    Sreejith S, Divya KP, Ajayaghosh A (2008) A near-infrared squaraine dye as a latent ratiometric fluorophore for the detection of aminothiol content in blood plasma. Angew Chem Int Ed 47:7883–7887. doi: 10.1002/ange.200803194 CrossRefGoogle Scholar
  31. 31.
    Lin W, Yuan L, Cao Z, Feng Y, Long L (2009) A sensitive and selective fluorescent thiol probe in water based on the conjugate 1, 4- addition of thiols to α, β-unsaturated ketones. Chem Eur J 15:5096–5103. doi: 10.1002/chem.200802751 CrossRefGoogle Scholar
  32. 32.
    Burford N, Eelman MD, Mahony DE, Morash M (2003) Definitive identification of cysteine and glutathione complexes of bismuth by mass spectrometry: assessing the biochemical fate of bismuth pharmaceutical agents. Chem Commun (Camb) 146–147. doi: 10.1039/b210570e
  33. 33.
    Rafii M, Elango R, Courtney-Martin G, House JD, Fisher L, Pencharz PB (2007) High-throughput and simultaneous measurement of homocysteine and cysteine in human plasma and urine by liquid chromatography-electro spray tandem mass spectrometry. Anal Biochem 371:71–81. doi: 10.1016/j.ab.2007.07.026 CrossRefPubMedGoogle Scholar
  34. 34.
    Zeng Y, Zhang G, Zhang D (2008) A selective colorimetric chemosensor for thiols based on intramolecular charge transfer mechanism. Anal Chim Acta 627:254–257. doi: 10.1016/j.aca.2008.08.028 CrossRefPubMedGoogle Scholar
  35. 35.
    Guo Y, Shao A, Xu J, Shi Y, Jiang S (2004) A specific colorimetric cysteine sensing probe based on dipyrromethane–TCNQ assembly. Tetrahedron Lett 45:6477–6480. doi: 10.1016/j.tetlet.2004.06.109 CrossRefGoogle Scholar
  36. 36.
    Zhang X, Li C, Cheng X, Wang X, Zhang B (2008) A near-infrared croconium dye-based colorimetric chemodosimeter for biological thiols and cyanide anion. Sens Acuators B 129:152–157. doi: 10.1016/j.snb.2007.07.094 CrossRefGoogle Scholar
  37. 37.
    Huo FJ, Sun YQ, Su J, Chao JB, Zhi HJ, Yin CX (2009) Colorimetric detection of thiols using a chromene molecule. Org Lett 11:4918–4921. doi: 10.1021/ol901951h CrossRefPubMedGoogle Scholar
  38. 38.
    Lakowicz JR (2002) Topics in fluorescence spectroscopy. Kluwer Academic Publishers, New YorkGoogle Scholar
  39. 39.
    Yi L, Li H, Sun L, Liu L, Zhang C, Xi Z (2009) A highly sensitive fluorescence probe for fast thiol-quantification assay of glutathione reductase. Angew Chem Int Ed Engl 48:4034–4037. doi: 10.1002/anie.200805693 CrossRefPubMedGoogle Scholar
  40. 40.
    Inoue T, Kirchhoff JR (2002) Determination of thiols by capillary electrophoresis with amperometric detection at a coenzyme pyrroloquinoline quinone modified electrode. Anal Chem 74:1349–1354. doi: 10.1021/ac0108515 CrossRefPubMedGoogle Scholar
  41. 41.
    Brigham MP, Stein WH, Moore S (1960) The concentrations of cysteine and cystine in human blood plasma. J Clin Invest 39:1633–1638. doi: 10.1172/JCI104186 CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D, Yi T, Huang C (2007) A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging. J Am Chem Soc 129:10322–10323. doi: 10.1021/ja073140i CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Qing-Ping Zuo
    • 2
    • 1
  • Bing Li
    • 1
  • Qi Pei
    • 1
  • Zuojun Li
    • 1
  • Shi-Kun Liu
    • 1
    • 2
  1. 1.Department of Pharmacy, The Third Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Pharmaceutics Department, College of pharmacyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations