Journal of Fluorescence

, Volume 20, Issue 5, pp 1077–1085 | Cite as

Fluorescent Triphenyl Substituted Maleimide Derivatives: Synthesis, Spectroscopy and Quantum Chemical Calculations

  • Hui-ding Xie
  • Louisa A. Ho
  • Michael S. Truelove
  • Ben Corry
  • Scott G. Stewart
Original Paper


In this paper we describe a semi-empirical quantum method for predicting the wavelength of maximum fluorescence excitation and emission for several known and new maleimide derivatives. All new maleimides, containing a N-Benzyl attachment, were successfully synthesised via a tandem Suzuki reaction with aryl boronic acids containing either an electron donating, electron withdrawing functional groups. Absorption and emission spectra calculated using the semi-empirical AM1 method with excited state ZINDO calculations proved more reliable than either Hartree-Fock Configuration interaction or time dependent density functional methods. Calculated absorption and emission wavelengths were compared with 26 experimental spectra from known or newly synthesised maleimides and found to have provide reasonable predictions, with an average deviation of less the 6% for absorption maxima and less than 4% for emission peaks. The described method provides a strong benchmark for the accuracy that can be expected from theoretical predictions of fluorescence spectra.


Maleimide Quantum chemistry Semi-empirical calculation Fluorescence Synthesis 


  1. 1.
    Landzettel WJ, Hargis KJ, Caboot JB, Adkins KL, Strein TG, Veening H, Becker HD (1995) High-performance liquid chromatographic separation and detection of phenols using 2-(9-anthrylethyl) chloroformate as a fluorophoric derivatizing reagent. J Chromatogr A 718:45–51CrossRefGoogle Scholar
  2. 2.
    Coates J (2001) Considerations in the fluorescence detection of low levels of dissolved species in HPLC and other related liquid flow techniques. Appl Spectrosc Rev 36:299–314CrossRefGoogle Scholar
  3. 3.
    Wang YL (1989) Fluorescent analog cytochemistry: tracing functional protein components in living cells. Methods Cell Biol 29:1–12CrossRefPubMedGoogle Scholar
  4. 4.
    Small JV, Rottner K, Hahne P, Anderson KL (1999) Visualising the actin cytoskeleton. Micros Res Tech 47:3–17CrossRefGoogle Scholar
  5. 5.
    Tsien RY, Miyawaki A (1998) Seeing the machinery of live cells. Science 280:1954–1955CrossRefPubMedGoogle Scholar
  6. 6.
    Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734CrossRefPubMedGoogle Scholar
  7. 7.
    Kanaoka Y (1977) Organic fluorescence reagents in the study of enzymes and proteins. Angew Chem Int Ed Engl 16:137–147CrossRefPubMedGoogle Scholar
  8. 8.
    Sirk SJ, Olafsen T, Barat B, Bauer KB, Wu AM (2008) Site-specific, thiol-mediated conjugation of fluorescent probes to cysteine-modified diabodies targeting CD20 or HER2. Bioconjug Chem 19:2527–2534CrossRefPubMedGoogle Scholar
  9. 9.
    Hendricks RT, Sherman D, Strulovici B, Broka CA (1995) 2-aryl-indolyl maleimides—novel and potent inhibitors of protein kinase C. Bioorg Med Chem Lett 5:67–72CrossRefGoogle Scholar
  10. 10.
    Kosower EM (1982) Intramolecular donor-acceptor systems. 9. Photophysics of (phenylamino)naphthalenesulfonates: a paradigm for excited-state intramolecular charge transfer. Acc Chem Res 15:259–266CrossRefGoogle Scholar
  11. 11.
    Jones GII, Jackson WR, Choi C, Bergmark WR (1985) Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. J Phys Chem 89:298–300Google Scholar
  12. 12.
    Van Gompel JA, Schuster GB (1989) Photophysical behavior of ester-substituted aminocoumarins: a new twist. J Phys Chem 93:1292–1295CrossRefGoogle Scholar
  13. 13.
    Takadate A, Masuda T, Murata C, Isobe A, Shinohara T, Irikura M, Goya S (1997) A derivatizing reagent-kit using a single coumarin fluorophore. Anal Sci 13:753–756CrossRefGoogle Scholar
  14. 14.
    Matsunaga H, Santa T, Iida T, Fukushima T, Homma H, Imai K (1997) Effect of the Substituent Group at the isothiocyanate moiety of edman reagents on the racemization and fluorescence intensity of amino acids derivatized with2, 1, 3-benzoxadiazolyl isothiocyanates. Analyst 122:931–936CrossRefGoogle Scholar
  15. 15.
    Saito R, Hirano T, Niwa H, Ohashi M (1997) Solvent and substituent effects on the fluorescent properties of coelenteramide analogues. J Chem Soc Perkin Trans 2:1711–1716Google Scholar
  16. 16.
    Fabian WMF, Niederreiter KS, Uray G, Stadlbauer W (1999) Substituent effects on absorption and fluorescence spectra of carbostyrils. J Mol Struct 477:209–220CrossRefGoogle Scholar
  17. 17.
    Hutchison GR, Ratner MA, Marks TJ (2002) Accurate prediction of band gaps in neutral heterocyclic conjugated polymers. J Phys Chem A 106:10596–10605CrossRefGoogle Scholar
  18. 18.
    Wang BC, Liao HR, Yeh HC, Wu WC, Chen CT (2005) Theoretical investigation of stokes shift of 3, 4-diaryl-substituted maleimide fluorophores. J Lumin 113:321–328CrossRefGoogle Scholar
  19. 19.
    Uchiyama S, Santa T, Imai K (1999) Semi-empirical PM3 calcualtion reveals the relationship between the fluorescence characteristics of 4, 7-disubstituted benzofurazan compounds, the LUMO energy and the dipole moment directed from the 4- to the 7-position. Perkin Trans 2:569–576CrossRefGoogle Scholar
  20. 20.
    Chachisvilis M, Chirvony VS, Shugla AM, Källebring B, Larsson S, Sundström V (1996) Spectral and photophysical properties of ethylene-bridged side-to-side porphyrin dimmers. 1. Ground-state absorption and fluorescence study and calculation of electronic structure of trans-1, 2-Bis(meso-octaethylporphyrinyl)ethane. J Phys Chem 100:13857–13866CrossRefGoogle Scholar
  21. 21.
    Amati M, Lelj F (2003) Luminescent Compounds fac- and mer-Aluminum Tris(quinolin-8-olate). A pure and hybrid density functional theory and time-dependent density functional theory investigation of their electronic and spectroscopic properties. J Phys Chem A 107:2560–2569CrossRefGoogle Scholar
  22. 22.
    Chakraborty A, Kar S, Nath DN, Guchhait N (2006) Photoinduced intramolecular charge transfer reaction in (E)-3-(4-Methylamino-phenyl)-acrylic acid methyl ester: a fluorescence study in combination with TDDFT calculation. J Phys Chem A 110:12089–12095CrossRefPubMedGoogle Scholar
  23. 23.
    Uray G, Kelterer AM, Hashim J, Glasnov TN, Kappe CO, Fabian WMF (2009) Bisquinolones as chiral fluorophores—a combined experimental and computational study of absorption and emission characteristics. J Mol Struct 929:85–96, TDDFTCrossRefGoogle Scholar
  24. 24.
    Sheikhshoaie I, Belaj F, Fabian WMF (2006) 1-(4-dimethylaminobenzyl)-2-(4-dimethylaminophenyl)-benzimidazole: Synthesis, X-ray crystallography and density functional theory calculations. J Mol Struct 794:244–250, TDDFTCrossRefGoogle Scholar
  25. 25.
    Cornelissen-Gude C, Rettig W (1999) An experimental and ab initio CI study for charge transfer excited states and their relaxation in pyrroloborane derivatives. J Phys Chem A 103:4371–4377CrossRefGoogle Scholar
  26. 26.
    Yeh H-C, Wu W-C, Chen C-T (2003) The colourful fluorescence from readily-synthesised 3, 4-diaryl-substituted maleimide fluorophores. Chem Commun 3:404–405CrossRefGoogle Scholar
  27. 27.
    Zerner MC, Leidlinger C, Fabian WMF, Junek H (2001) Push–pull dyes containing malononitrile dimer as acceptor: synthesis, spectroscopy and quantum chemical calculations. J Mol Struct (Theochem) 543:129–146CrossRefGoogle Scholar
  28. 28.
    Stewart SG, Polomska ME, Lim RW (2005) A concise synthesis of maleic anhydride and maleimide natural products found in Antrodia camphorata. Tetrahedron Lett 48:2241–2244CrossRefGoogle Scholar
  29. 29.
    Dubernet M, Caubert V, Guillard J, Viaud-Massuard M-C (2005) Synthesis of substituted bis(heteroaryl)maleimides. Tetrahedron 61:4585CrossRefGoogle Scholar
  30. 30.
    Littke AF, Fu GC (2001) A versatile catalyst for Heck reactions of aryl chlorides and aryl bromides under mild conditions. J Am Chem Soc 123:6989–7000CrossRefPubMedGoogle Scholar
  31. 31.
    El Yahyaoui A, Felix G, Heynderickx A, Moustrou C, Samat A (2007) Convenient synthesis of photochromic symmetrical or unsymmetrical bis(heteroaryl)maleimides via the Suzuki–Miyaura cross-coupling reaction. Tetrahedron 63:9482–9487CrossRefGoogle Scholar
  32. 32.
    Dewar MJS, Zoebisch EG, Healy EF (1985) AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  33. 33.
    Zerner MC, Correa de Mello P, Hehenberger M (1982) Converging SCF calculations on excited states. Int J Quantum Chem 21:251–259CrossRefGoogle Scholar
  34. 34.
    Ridley JE, Zerner MC (1973) An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines. Theor Chem Acc 32:111–134CrossRefGoogle Scholar
  35. 35.
    Zerner M (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 2. VCH, New York, p 313CrossRefGoogle Scholar
  36. 36.
    Foresman JB, Head-Gordon MJ, Pople A, Frisch MJ (1992) Toward a systematic molecular orbital theory for excited states. J Phys Chem 96:135–149CrossRefGoogle Scholar
  37. 37.
    Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., WallingfordGoogle Scholar
  38. 38.
    Ji, Jun SY, Qing Y, Liu S, Chen M, Zhao J (2009) Tuning the intramolecular charge transfer of alkynylpyrenes: effecton photophysical properties and its application in design of OFF–ON fluorescent thiol probes. J Org Chem 74:4855–4865CrossRefPubMedGoogle Scholar
  39. 39.
    Ochi T, Yamaguchi Y, Wakamiya T, Matsubara Y, Yoshida Z-I (2008) Block modification of rod-shaped π-conjugated carbon frameworks with donor and acceptor groups toward highly fluorescent molecules: synthesis and emission characteristics. Org Biomol Chem 6:1222–1231CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hui-ding Xie
    • 1
  • Louisa A. Ho
    • 2
  • Michael S. Truelove
    • 2
  • Ben Corry
    • 2
  • Scott G. Stewart
    • 2
  1. 1.Department of ChemistryKunming Medical CollegeKunmingChina
  2. 2.School of Biomedical, Biomolecular and Chemical SciencesThe University of Western AustraliaCrawleyAustralia

Personalised recommendations