Advertisement

Journal of Fluorescence

, Volume 21, Issue 3, pp 937–944 | Cite as

Encapsulation of Hydrophobic Dyes in Polystyrene Micro- and Nanoparticles via Swelling Procedures

  • Thomas Behnke
  • Christian Würth
  • Katrin Hoffmann
  • Martin Hübner
  • Ulrich Panne
  • Ute Resch-GengerEmail author
Original Paper

Abstract

Aiming at the derivation of a generalized procedure for the straightforward preparation of particles fluorescing in the visible and near-infrared (NIR) spectral region, different swelling procedures for the loading of the hydrophobic polarity-probe Nile Red into nano- and micrometer sized polystyrene particles were studied and compared with respect to the optical properties of the resulting particles. The effect of the amount of incorporated dye on the spectroscopic properties of the particles was investigated for differently sized beads with different surface chemistries, i.e., non-functionalized, amino-modified and PEG-grafted surfaces. Moreover, photostability and leaking studies were performed. The main criterion for the optimization of the dye loading procedures was a high and thermally and photochemically stable fluorescence output of the particles for the future application of these systems as fluorescent labels.

Keywords

Fluorescence Nile Red Polystyrene Nanoparticles Microparticles Encapsulation Swelling 

Notes

Acknowledgements

We gratefully acknowledge financial support from the Federal Ministry of Economics and Technology (BMWI-22/06). We would also like to thank Mrs. M. Spieles for accurately technical assistance.

References

  1. 1.
    Seydack M (2005) Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron 20:2454–2469PubMedCrossRefGoogle Scholar
  2. 2.
    Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology. Chem Soc Rev 35:1028–1042PubMedCrossRefGoogle Scholar
  3. 3.
    Yan JL, Estevez MC, Smith JE, Wang KM, He XX, Wang L, Tan WH (2007) Dye doped nanoparticles for bioanalysis. Nano Today 2:44–50CrossRefGoogle Scholar
  4. 4.
    Morgan TT, Muddana HS, Altinoglu EI, Rouse SM, Tabakovic A, Tabouillot T, Russin TJ, Shanmugavelandy SS, Butler PJ, Eklund PC, Yun JK, Kester M, Adair JH (2008) Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett 8:4108–4115PubMedCrossRefGoogle Scholar
  5. 5.
    Chan CPY, Bruemmel Y, Seydack M, Sin KK, Wong LW, Merisko-Liversidge E, Trau D (2004) Nanocrystal biolabel with releasable fluorophores for immunoassays. Anal Chem 76:3638–3645PubMedCrossRefGoogle Scholar
  6. 6.
    Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123–126:471–485PubMedCrossRefGoogle Scholar
  7. 7.
    Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15:2657–2669CrossRefGoogle Scholar
  8. 8.
    Clark HA, Hoyer M, Philbert MA, Kopelman R (1999) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71:4831–4836PubMedCrossRefGoogle Scholar
  9. 9.
    Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635PubMedCrossRefGoogle Scholar
  10. 10.
    Sukhanova A, Susha AS, Bek A, Mayilo S, Rogach AL, Feldmann J, Oleinikov V, Reveil B, Donvito B, Cohen JHM, Nabiev I (2007) Nanocrystal-encoded fluorescent microbeads for proteomics: antibody profiling and diagnostics of autoimmune diseases. Nano Lett 7:2322–2327PubMedCrossRefGoogle Scholar
  11. 11.
    Battersby BJ, Trau M (2007) Optically encoded particles and their applications in multiplexed biomedical assays. Aust J Chem 60:343–353CrossRefGoogle Scholar
  12. 12.
    Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315:1393–1396PubMedCrossRefGoogle Scholar
  13. 13.
    Muddana HS, Morgan TT, Adair JH, Butler PJ (2009) Photophysics of Cy3-encapsulated calcium phosphate nanoparticles. Nano Lett 9:1559–1566PubMedCrossRefGoogle Scholar
  14. 14.
    Saxena V, Sadoqi M, Shao J (2004) Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. J Photochem Photobiol B-Biology 74:29–38CrossRefGoogle Scholar
  15. 15.
    Miletto I, Gilardino A, Zamburlin P, Dalmazzo S, Lovisolo D, Caputo G, Viscardi G, Martra G (2009) Highly bright and photostable cyanine dye-doped silica nanoparticles for optical imaging: photophysical characterization and cell tests. Dyes Pigments 84:121–127CrossRefGoogle Scholar
  16. 16.
    Mayr T, Moser C, Klimant I (2009) Performance of fluorescent labels in sedimentation bead arrays—a comparison study. J Fluores 19:303–310CrossRefGoogle Scholar
  17. 17.
    Borisov SM, Mayr T, Klimant I (2008) Poly(styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors. Anal Chem 80:573–582PubMedCrossRefGoogle Scholar
  18. 18.
    Härmä H (2002) Technology Review 126/2002 Particle technologies in diagnosticsGoogle Scholar
  19. 19.
    Nolan JP, Mandy F (2006) Multiplexed and microparticle-based analyses: quantitative tools for the large-scale analysis of biological systems. Cytometry Part A 69A:318–325CrossRefGoogle Scholar
  20. 20.
    Stevens PW, Wang CH J, Kelso DM (2003) Immobilized particle arrays: coalescence of planar- and suspension-array technologies. Anal Chem 75:1141–1146PubMedCrossRefGoogle Scholar
  21. 21.
    Bringley JF, Penner TL, Wang RZ, Harder JF, Harrison WJ, Buonemani L (2008) Silica nanoparticles encapsulating near-infrared emissive cyanine dyes. J Coll Interface Sci 320:132–139CrossRefGoogle Scholar
  22. 22.
    Zhu H, McShane MJ (2005) Loading of hydrophobic materials into polymer particles: implications for fluorescent nanosensors and drug delivery. J Am Chem Soc 127:13448–13449PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang R, Cherdhirankorn T, Graf K, Koynov K, Berger R (2008) Swelling of cross-linked polystyrene beads in toluene. Microelectron Eng 85:1261–1264CrossRefGoogle Scholar
  24. 24.
    Errede LA, Hanson SC (1994) Polymer swelling. 15. Swelling and deswelling studies of polystyrene liquid-systems in binary-solutions. J Appl Polymer Sci 54:619–647CrossRefGoogle Scholar
  25. 25.
    Sun XK, Rossin R, Turner JL, Becker ML, Joralemon MJ, Welch MJ, Wooley KL (2005) An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 6:2541–2554PubMedCrossRefGoogle Scholar
  26. 26.
    Qian HS, Li ZQ, Zhang Y (2008) Multicolor polystyrene nanospheres tagged with up-conversion fluorescent nanocrystals. Nanotechnology 19:255601CrossRefGoogle Scholar
  27. 27.
    Li MJ, Zhang H, Zhang JH, Wang CL, Han K, Yang B (2006) Easy preparation and characterization of highly fluorescent polymer composite microspheres from aqueous CdTe nanocrystals. J Coll Interface Sci 300:564–568CrossRefGoogle Scholar
  28. 28.
    Zhang Q, Han Y, Wang WC, Zhang L, Chang J (2009) Preparation of fluorescent polystyrene microspheres by gradual solvent evaporation method. Eur Polymer J 45:550–556CrossRefGoogle Scholar
  29. 29.
    Deye JF, Berger TA, Anderson AG (1990) Nile Red as a solvatochromic dye for measuring solvent strength in normal liquids and mixtures of normal liquids with supercritical and near critical fluids. Anal Chem 62:615–622CrossRefGoogle Scholar
  30. 30.
    Datta A, Mandal D, Pal SK, Bhattacharyya K (1997) Preparation of fluorescent polystyrene microspheres by gradual solvent evaporation method. J Phys Chem B 101:10221–10225CrossRefGoogle Scholar
  31. 31.
    Golini CM, Williams BW, Foresman JB (1998) Further solvatochromic, thermochromic, and theoretical studies on Nile Red. J Fluoresc 8:395–404CrossRefGoogle Scholar
  32. 32.
    Jee AY, Park S, Kwon H, Lee M (2009) Excited state dynamics of Nile Red in polymers. Chem Phys Lett 477:112–115CrossRefGoogle Scholar
  33. 33.
    Resch-Genger U, Pfeifer D, Monte C, Pilz W, Hoffmann A, Spieles M, Rurack K, Hollandt J, Taubert D, Schonenberger B, Nording P (2005) Traceability in fluorometry: Part II. Spectral fluorescence standards. J Fluoresc 15:315–336PubMedCrossRefGoogle Scholar
  34. 34.
    Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe, Nile Red. J Lipid Res 26:781–789PubMedGoogle Scholar
  35. 35.
    Sokolov I, Naik S (2008) Novel fluorescent silica nanoparticles: towards ultrabright silica nanoparticles. Small 4:934–939PubMedCrossRefGoogle Scholar
  36. 36.
    Burns AA, Vider J, Ow H, Herz E, Penate-Medina O, Baumgart M, Larson SM, Wiesner U, Bradbury M (2009) Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett 9:442–448PubMedCrossRefGoogle Scholar
  37. 37.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Meth 5:763–775CrossRefGoogle Scholar
  38. 38.
    Clift MJD, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V (2008) The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacology 232:418–427CrossRefGoogle Scholar
  39. 39.
    Pauli J, Vag T, Haag R, Spieles M, Wenzel M, Kaiser WA, Resch-Genger U, Hilger I (2009) An in vitro characterization study of new near infrared dyes for molecular imaging. Eur J Med Chem 44:3496–3503PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Thomas Behnke
    • 1
  • Christian Würth
    • 1
  • Katrin Hoffmann
    • 1
  • Martin Hübner
    • 1
  • Ulrich Panne
    • 1
  • Ute Resch-Genger
    • 1
    Email author
  1. 1.BAM Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations