Journal of Fluorescence

, Volume 20, Issue 3, pp 657–664 | Cite as

On the Photophysical Properties of New Luminol Derivatives and their Synthetic Phthalimide Precursors

  • Raúl Pérez-Ruiz
  • Robert Fichtler
  • Yrene Diaz Miara
  • Matthieu Nicoul
  • Dominik Schaniel
  • Helfried Neumann
  • Matthias Beller
  • Dirk Blunk
  • Axel G. Griesbeck
  • Axel Jacobi von Wangelin
Original Paper

Abstract

The photophysical properties of a series of structurally related 4-aminophthalimides and the corresponding 5-aminophthalic hydrazides (luminols) are reported. Absorption, steady-state, and time-resolved fluorescence spectra of luminols exhibited substitution, solvent, and pH dependence. Singlet lifetimes have been determined by time-resolved laser flash spectroscopy. UV spectra in gas phase and DMSO solution were calculated by TD-DFT which revealed the existence of two low-energy excited singlet states with strong pH-sensitivity.

Keywords

Fluorescence Luminols Phthalimides Singlet lifetime pH dependence 

Supplementary material

10895_2010_598_MOESM1_ESM.doc (2.5 mb)
ESM 1(DOC 2561 kb)

References

  1. 1.
    Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4031CrossRefPubMedGoogle Scholar
  2. 2.
    Griesbeck AG, Hoffmann N, Warzecha K-D (2007) Photoinduced-electron-transfer chemistry: from studies on PET processes to applications in natural product synthesis. Acc Chem Res 40:128–140CrossRefPubMedGoogle Scholar
  3. 3.
    a) Mestre YF, Zamora LL, Calatayud JM (2001) Flow-chemiluminescence: a growing modality of pharmaceutical analysis. Luminescence 16:213–235. b) Lin ZY, Chen JH, Chen GN (2007) Study on the electrochemiluminescent behavior of menadione sodium bisulfite in presence of luminol. Talanta 72:1681–1686. c) Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036. d) White EH, Roswell DF (1970) Chemiluminescence of organic hydrazides. Acc Chem Res 3:54–62Google Scholar
  4. 4.
    Mitra S, Das R, Mukherjee S (1995) Complex-formation and photophysical properties of luminol - solvent effects. J Photochem Photobiol A: Chem 87:225–230CrossRefGoogle Scholar
  5. 5.
    Vasilescu M, Constantinescu T, Voicescu H, Lemmetyinen H, Vuorimaa E (2003) Spectrophotometric study of luminol in dimethyl sulfoxide-potassium hydroxide. J Fluorescence 13:315–322CrossRefGoogle Scholar
  6. 6.
    Brundrett RB, White EH (1974) Synthesis and chemiluminescence of derivatives of luminol and isoluminol. J Am Chem Soc 96:7497–7502CrossRefGoogle Scholar
  7. 7.
    White EH, Bursey MM (1966) Analogs of luminol. Synthesis and chemiluminescence of two methoxy-substituted aminophthalic hydrazides. J Org Chem 31:1912–1917CrossRefGoogle Scholar
  8. 8.
    Brundrett RB, Roswell DF, White EH (1972) Yields of chemically produced excited states. J Am Chem Soc 94:7536–7541CrossRefGoogle Scholar
  9. 9.
    Gundermann K-D, Drawert M (1962) Konstitution und Chemilumineszenz, I, Sterische Resonanzhinderung bei alkylierten Amino-Phthalhydraziden. Chem Ber 95:2018–2026CrossRefGoogle Scholar
  10. 10.
    a) Neumann H, Jacobi von Wangelin A, Gördes D, Spannenberg A, Beller M (2001) A new multicomponent coupling of aldehydes, amides, and dienophiles: Atom-efficient one-pot synthesis of highly substituted cyclohexenes and cyclohexadienes. J Am Chem Soc 123:8398–8399. b) Jacobi von Wangelin A, Neumann H, Gördes D, Spannenberg A, Beller M (2001) Facile three-component coupling procedure for the synthesis of substituted tetrahydroisoindole-1,3-diones from α,β-unsaturated aldehydes. Org Lett 3:2895–2898. c) Klaus S, Hübner S, Neumann H, Strübing D, Jacobi von Wangelin A, Gördes D, Beller M (2004) Second generation protocol for multicomponent coupling reactions of aldehydes, amides and dienophiles. Adv Synth Catal 346:970–978. d) Neumann H, Jacobi von Wangelin A, Klaus S, Strübing D, Gördes D, Beller M (2003) Anilines made easily: From aldehydes to tri-, tetra-, and pentasubstituted anilines in two steps. Angew Chem Int Ed 42:4503–4507. e) Neumann H, Klaus S, Klawonn M, Strübing D, Hübner S, Gördes D, Jacobi von Wangelin A, Lalk M, Beller M (2004) A new efficient synthesis of substituted luminols using multicomponent reactions. Z Naturforsch 59b:431–438Google Scholar
  11. 11.
    a) Jacobi von Wangelin A, Neumann H, Gördes D, Klaus S, Strübing D, Beller M (2003) Multicomponent coupling reactions for organic synthesis: chemoselective reactions with amide-aldehyde mixtures. Chem Eur J 9:4286–4294. b) Strübing D, Jacobi von Wangelin A, Neumann H, Gördes D, Hübner S, Klaus S, Spannenberg A, Beller M (2005) Multicomponent reaction of aldehydes, anhydrides, and dienophiles: synthesis of “butterfly”-like diazatetradecenes. Eur J Org Chem 107–113. c) Strübing D, Neumann H, Klaus S, Jacobi von Wangelin A, Gördes D, Beller M, Braiuca P, Ebert C, Gardossi L, Kragl U (2004) Enzymatic resolution of 4-N-phenylacetylamino-derivatives obtained from multicomponent reactions using PenG amidase and in silico studies. Tetrahedron 60:683–691. d) Jacobi von Wangelin A, Neumann H, Gördes D, Hübner S, Wendler C, Klaus S, Strübing D, Spannenberg A, Jiao H, El Firdoussi L, Thurow K, Stoll N, Beller M (2005) Sequential three-component and Heck reactions for the synthesis of phenanthridones. Synthesis 12:2029–2038Google Scholar
  12. 12.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  13. 13.
    a) Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. b) Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206Google Scholar
  14. 14.
    a) McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, z=11–18. J Chem Phys 72:5639–5648. b) Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave-functions. J Chem Phys 72:650–654Google Scholar
  15. 15.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hrahian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision D.02, (2004) Gaussian Inc., Wallingford, CTGoogle Scholar
  16. 16.
    a) Amovilli C, Barone V, Cammi R, Cancès E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1999) Advances in Quantum Chemistry, Vol 32: Quantum Systems in Chemistry and Physics, Part II. Academic Press, San Diego, USA, pp 227. b) Tomasi J, Cammi R, Mennucci B, Cappelli C, Corni S (2002) Molecular properties in solution described with a continuum solvation model. Phys Chem Chem Phys 4:5697–5712Google Scholar
  17. 17.
    a) Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224. b) Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464. c) Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449Google Scholar
  18. 18.
    Ghoneim N (1991) Solvatochromic spectroscopy of luminol in solvent mixtures. J Photochem Photobiol A: Chem 60:175–182CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Bordwell FG, Cheng J-P, Wang D (1997) Equilibrium acidities and homolytic bond dissociation energies (BDEs) of the acidic H-N bonds in hydrazines and hydrazides. J Am Chem Soc 119:9125–9129CrossRefGoogle Scholar
  20. 20.
    Blunk D, Griesbeck AG, Jacobi von Wangelin A, unpublished resultsGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Raúl Pérez-Ruiz
    • 1
  • Robert Fichtler
    • 1
  • Yrene Diaz Miara
    • 1
  • Matthieu Nicoul
    • 2
  • Dominik Schaniel
    • 2
  • Helfried Neumann
    • 3
  • Matthias Beller
    • 3
  • Dirk Blunk
    • 1
  • Axel G. Griesbeck
    • 1
  • Axel Jacobi von Wangelin
    • 1
  1. 1.Department of ChemistryUniversity of CologneKölnGermany
  2. 2.Department of Physics IUniversity of CologneKölnGermany
  3. 3.Leibniz-Institute of CatalysisRostockGermany

Personalised recommendations