Skip to main content
Log in

Determination of the β-Glucosidase Activity in Different Soils by Pre Capillary Enzyme Assay Using Capillary Electrophoresis with Laser-Induced Fluorescence Detection

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Enzyme activities can provide indication for quantitative changes in soil organic matter (SOM). It is known that the activities of most enzymes increase as native SOM content reflecting larger microbial communities and stabilization of enzymes on humic materials. β-Gucosidase (β-Glu) activities have been frequently used as indicators of changes in quantity and quality of SOM. In this study we propose a simple and very sensitive method, which has lower limit of detection compared with classic spectrophotometric method with the aim of determinate the β-Glu activity in soil samples using Fluorescein mono-β-D-glucopyranoside (FMGlc) as a substrate. The fluorescein released by the enzymatic reaction was quantified by capillary electrophoresis-laser induced fluorescence (CE-LIF) method. The background electrolyte (BGE) consisted in 40 mM phosphate buffer, pH 6. The LOD and LOQ for fluorescein were 1.3 10−7 mg mL−1 and 6.4 10−6 mg mL−1, respectively. This work deals with the minimization of the mixture for the enzymatic reaction and with the optimization conditions of CE separation. To the best of our knowledge, this is the first time that an enzymatic activity was detected in soil using CE-LIF system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tabatabai MA (1994) In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis: microbiological and biochemical properties. Part 2. ASA, Madison, pp 775–833

  2. Kandeler E (1996) In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Methods in soil biology. Springer, Berlin, pp 406–408

  3. Jordan D, Kremer RJ, Bergfield WA, Kim KY, Cacnio VN (1995) Evaluation of microbial methods as indicators of soil quality in historical agricultural fields. Biol Fert Soils 19:297–302

    Article  Google Scholar 

  4. Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14:423–427

    Article  CAS  Google Scholar 

  5. Bending GD, Turner MK, Jones JE (2002) Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol Biochem 34:1073–1082

    Article  CAS  Google Scholar 

  6. Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T (1993) Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74:1586–1593

    Article  CAS  Google Scholar 

  7. Asmar F, Eiland F, Nielson NE (1994) Effect of extracellularenzyme activities on solubilization rate of soil organic nitrogen. Biol Fertil Soils 17:32–38

    Article  CAS  Google Scholar 

  8. Masciandaro G, Ceccanti B (1999) Assessing soil quality in different agro-ecosystems through biochemical and chemico-structural properties of humic substances. Soil Tillage Res 51:129–137

    Article  Google Scholar 

  9. Allison SD, Vitousek PM (2005) Responses of extracelular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944

    Article  CAS  Google Scholar 

  10. Pankhurst CE (1994) In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land use. CAB International, Wallingford, pp 331–352

  11. Miller M, Dick RP (1995) Thermal stability and activities of soil enzymes as influenced by crop rotations. Soil Biol Biochem 27:1161–1166

    Article  CAS  Google Scholar 

  12. Dick RP, Breakwill D, Turco R (1996) In: Doran JW, Jones AJ (eds) Handbook of methods for assessment of soil quality. Soil Science Society of America Journal, pp 247–272

  13. Badiane NNY, Chotte JL, Patea E, Masse D, Rouland C (2001) Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Appl Soil Ecol 18:229–238

    Article  Google Scholar 

  14. Gil-Sotres F, Trasar-Cepeda C, Leiros MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  15. Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. Methods for Assessing Soil Quality, vol. 9. Soil Science Society of America, Madison

  16. Kuperman RG, Carreiro MM (1997) Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol Biochem 29:179–190

    Article  CAS  Google Scholar 

  17. Bergstrom DW, Monreal CM, King DJ (1998) Sensitivity of soil enzyme activities to conservation practices. Soil Sci Soc Am J 62:1286–1295

    CAS  Google Scholar 

  18. Leirós MC, Trasar-Cepeda C, García-Fernández F, Gil-Sotrés F (1999) Defining the validity of a biochemical index of soil quality. Biol Fert Soils 30:140–146

    Article  Google Scholar 

  19. Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  CAS  Google Scholar 

  20. Madejón E, Burgos P, López R, Cabrera F (2001) Soil enzymatic response to addition of heavy metals with organic residues. Biol Fert Soils 34:144–150

    Article  CAS  Google Scholar 

  21. Ndiaye EL, Sandeno JM, McGrath D, Dick RP (2000) Integrative biological indicators for detecting change in soil quality. Am J Altern Agr 15:26–36

    Article  Google Scholar 

  22. Skujins J (1978) In: Burns RG (ed) Soil enzymes. Academic, London, pp 1–49

  23. Dick RP (1994) In: Doran JW et al (ed) Defining soil quality for a sustainable environment Special Publication. Soil Science Society of America, Madison, pp 107–124

  24. Issaq HJ (1999) Capillary electrophoresis of natural products-II. Electrophoresis 20:3190–3202

    Article  CAS  PubMed  Google Scholar 

  25. Yao K, Wang N, Zhuang J, Yang Z, Ni H, Xu Q, Sun C, Bi S (2007) Studies on the effects of Al(III) on the lactate dehydrogenase activity by differential pulse voltammetry. Talanta 73:529–533

    Article  CAS  PubMed  Google Scholar 

  26. Lai TE, Pullammanappallil PC, Clarke WP (2006) Quantification of cellulase activity using cellulose-azure. Talanta 69:68–72

    Article  CAS  PubMed  Google Scholar 

  27. Koncki R, Rozum B, Głąb S (2006) pH-metric detection of alkaline phosphatase activity as a novel biosensing platform. Talanta 68:1020–1025

    Article  CAS  PubMed  Google Scholar 

  28. Vuorensola K, Sirén H, Ketola RA (2001) Optimization of capillary electrophoretic- electrospray ionization-mass spectrometric analysis of catecholamines. Electrophoresis 22:4347–4354

    Article  CAS  PubMed  Google Scholar 

  29. He ZH, Jin WR (2003) Capillary electrophoretic enzyme immunoassay with electrochemical detection for thyroxine. Anal Biochem 313:34–40

    Article  CAS  PubMed  Google Scholar 

  30. Huang XJ, Fang ZL (2000) Chemiluminescence detection in capillary electrophoresis. Anal Chim Acta 414:1–14

    Article  CAS  Google Scholar 

  31. Pinto DM, Arriaga EA, Craig D, Angelova J, Sharma N, Ahmadzadeh H, Dovichi NJ, Boulet CA (1997) Picomolar assay of native proteins by capillary electrophoresis precolumn labeling, submicellar separation, and laser-induced fluorescence detection. Anal Chem 69:3015–3021

    Article  CAS  Google Scholar 

  32. Swinney K, Bornhop DJ (2000) Detection in capillary electrophoresis. Electrophoresis 21:1239–1250

    Article  CAS  PubMed  Google Scholar 

  33. Dong Y, Chen H, Chen Y, Hui Y, Chen X, Hu Z (2006) Separation and determination of epinephrine and dopamine in traditional Chinese medicines by micellar electrokinetic capillary chromatography with laser induced fluorescence detection. J Sep Sci 29:2049–2055

    Article  CAS  PubMed  Google Scholar 

  34. Armenta S, Garrigues S, de la Guardia M (2008) Green analytical chemistry. TrAC Trends Anal Chem 27:497–511

    Article  CAS  Google Scholar 

  35. Eivazi F, Tabatabai MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20:601–606

    Article  CAS  Google Scholar 

  36. Messina GA, De Vito IE, Raba J (2006) On-line microfluidic sensor integrated with an enzyme-modified pre-cell for the monitoring of paracetamol in pharmaceutical samples. Anal Chim Acta 559:156–158

    Article  CAS  Google Scholar 

  37. Stege PW, Messina GA, Bianchi G, Olsina RA, Raba J (2009) Determination of arylsulphatase and phosphatase enzyme activities in soil using screen-printed electrodes modified with multi-walled carbon nanotubes. Soil Biol Biochem 41:2444–2452

    Article  CAS  Google Scholar 

  38. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  39. Elsgaard L, Andersen GH, Eriksen J (2002) Measurement of arylsulphatase activity in agricultural soils using a simplified assay. Soil Biol Biochem 34:79–82

    Article  CAS  Google Scholar 

  40. Tabatabai MA, Bremner JM (1970) Arylsulfatase activity of soils. Soil Sci Soc Amer Proc 34:225–229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Agencia Nacional de Promoción Científica y Tecnológica (FONCYT) (PICT-BID) and Universidad Nacional de San Luis (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia W. Stege.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stege, P.W., Messina, G.A., Bianchi, G. et al. Determination of the β-Glucosidase Activity in Different Soils by Pre Capillary Enzyme Assay Using Capillary Electrophoresis with Laser-Induced Fluorescence Detection. J Fluoresc 20, 517–523 (2010). https://doi.org/10.1007/s10895-009-0575-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0575-7

Keywords

Navigation