Journal of Fluorescence

, Volume 20, Issue 1, pp 203–213 | Cite as

Single-Pair Fluorescence Resonance Energy Transfer (spFRET) for the High Sensitivity Analysis of Low-Abundance Proteins Using Aptamers as Molecular Recognition Elements

  • Wonbae Lee
  • Anne Obubuafo
  • Yong-Ill Lee
  • Lloyd M. Davis
  • Steven A. Soper
Original Paper


We have developed a strategy for the detection of single protein molecules, which uses single-pair fluorescence resonance energy transfer (spFRET) as the readout modality and provides exquisite analytical sensitivity and reduced assay turn-around-time by eliminating various sample pre-processing steps. The single-protein detection assay uses two independent aptamer recognition events to form an assembly conducive to intramolecular hybridization of oligonucleotide complements that are tethered to the aptamers. This hybridization brings a donor-acceptor pair within the Förster distance to create a fluorescence signature indicative of the presence of the protein-aptamer(s) association complex. As an example of spFRET, we demonstrate the technique for the analysis of serum thrombin. The assay requires co-association of two distinct epitope-binding aptamers, each of which is labeled with a donor or acceptor fluorescent dye (Cy3 or Cy5, respectively) to produce a FRET response. The FRET response between Cy3 and Cy5 was monitored by single-molecule photon-burst detection, which provides high analytical sensitivity when the number of single-molecule events is plotted versus the target concentration. We are able to identify thrombin with high efficiency based on photon burst events transduced in the Cy5 detection channel. We also demonstrate that the technique can discriminate thrombin molecules from its analogue prothrombin. The analytical sensitivity was >200-fold better than an ensemble measurement.


Single-pair FRET Aptamers Thrombin·DNA-protein interactions Biosensor 



The authors acknowledge financial support of this work through the National Institutes of Health (EB-006639), the National Science Foundation (EPS-0346411) and the Louisiana Board of Regents.


  1. 1.
    Mikolajczyk SD, Rittenhouse HG (2002) Presented at the 1274th Meeting of the Keio Medical Society in TokyoGoogle Scholar
  2. 2.
    Tchetgen MB, Oesterling JE (1997) Urol Clin North Am 24:283CrossRefPubMedGoogle Scholar
  3. 3.
    Christensson A, Laurell CB, Lilja H (1990) Eur J Biochem 194:755CrossRefPubMedGoogle Scholar
  4. 4.
    Diamandis EP, Yu H (1997) Urol Clin North Am 24:275CrossRefPubMedGoogle Scholar
  5. 5.
    Critz FA, Williams WH, Benton JB, Levinson AK, Holladay CT, Holladay DA (2000) J Urol 163:1085CrossRefPubMedGoogle Scholar
  6. 6.
    Heyduk T, Heyduk E (2002) Nature Biotechnol 20:171CrossRefGoogle Scholar
  7. 7.
    Tan W, Wang K, Drake TJ (2004) Curr Opin Chem Biol 8:547CrossRefPubMedGoogle Scholar
  8. 8.
    Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM, Östman A, Landegren U (2002) Nature Biotechnol 20:473CrossRefGoogle Scholar
  9. 9.
    Gullberg M, Fredriksson S, Taussig M, Jarvius J, Gústafsdóttir S, Landegren U (2003) Curr Opin Biotechnol 14:82CrossRefPubMedGoogle Scholar
  10. 10.
    Wang J, Li T, Guo X, Lu Z (2005) Nucleic Acids Res 33:e23CrossRefPubMedGoogle Scholar
  11. 11.
    Wang XL, Li F, Su YH, Sun X, Li XB, Schluesener HJ, Tang F, Xu SQ (2004) Anal Chem 76:5605CrossRefPubMedGoogle Scholar
  12. 12.
    Okagbare P, Soper S (2009) The Analyst 134:97CrossRefPubMedGoogle Scholar
  13. 13.
    Wabuyele MB, Farquar H, Stryjewski W, Hammer RP, Soper SA, Cheng YW, Barany F (2003) J Am Chem Soc 125:6937CrossRefPubMedGoogle Scholar
  14. 14.
    Davie EW, Fujikawa K, Kisiel W (1991) Biochemistry 30:10363CrossRefPubMedGoogle Scholar
  15. 15.
    Gosalia DN, Denney WS, Salisbury CM, Ellman JA, Diamond SL (2006) Biotechnol Bioeng 94:1099CrossRefPubMedGoogle Scholar
  16. 16.
    Bizios R, Malik B (1986) J Cell Physiol 128:485CrossRefPubMedGoogle Scholar
  17. 17.
    Bar-Shavit R, Hruska KA, Kahn AJ, Wilner GD (1986) Ann NY Acad Sci 485:335CrossRefPubMedGoogle Scholar
  18. 18.
    Brummel-Ziedins KE, Vossen CY, Butenas S, Mann KG, Rosendaal FR (2005) J Thromb Haemost 3:2497CrossRefPubMedGoogle Scholar
  19. 19.
    Tasset DM, Kubik MF, Steiner W (1997) J Biol Chem 272:688CrossRefGoogle Scholar
  20. 20.
    Bichler J, Heit JA, Owen WG (1996) Thromb Res 84:289CrossRefPubMedGoogle Scholar
  21. 21.
    Kim Y, Cao Z, Tan W (2008) Proc Natl Acad Sci USA 105:5664CrossRefPubMedGoogle Scholar
  22. 22.
    Kretz CA, Stafford AR, Fredenburgh JC, Weitz JI (2006) J Biol Chem 281:37477CrossRefPubMedGoogle Scholar
  23. 23.
    Stubbs MT, Bode W (1995) Trends Biochem Sci 20:23CrossRefPubMedGoogle Scholar
  24. 24.
    Ellington AD, Szostak JW (1990) Nature 346:818CrossRefPubMedGoogle Scholar
  25. 25.
    Tuerk C, Gold L (1990) Science 249:505CrossRefPubMedGoogle Scholar
  26. 26.
    Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Annu Rev Biochem 64:763CrossRefPubMedGoogle Scholar
  27. 27.
    Tombelli S, Minunni M, Mascini M (2005) Biosens Bioelectron 20:2424CrossRefPubMedGoogle Scholar
  28. 28.
    Nimjee SM, Rusconi CP, Sullenger BA (2005) Annu Rev Med 56:555CrossRefPubMedGoogle Scholar
  29. 29.
    Heyduk E, Heyduk T (2005) Anal Chem 77:1147CrossRefPubMedGoogle Scholar
  30. 30.
    Marriott G, Heidecker M, Diamandis EP, Yan-Marriott Y (1994) Biophys J 67:957CrossRefPubMedGoogle Scholar
  31. 31.
    Mosiman VL, Patterson BK, Canterero L, Goolsby CL (1997) Cytometry (Comm Clin Cytometry) 30:151CrossRefGoogle Scholar
  32. 32.
    Park JW (2005) Cytometry Part A 65:148Google Scholar
  33. 33.
    Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung CY (2003) J Histochem Cytochem 51:1699PubMedGoogle Scholar
  34. 34.
    Mathies RA, Peck K, Stryer L (1990) Anal Chem 62:1786CrossRefPubMedGoogle Scholar
  35. 35.
    Markham NR, Zuker M (2005) Nucleic Acids Res 33:577CrossRefGoogle Scholar
  36. 36.
    SantaLucia J Jr (1998) Proc Natl Acad Sci USA 95:1460CrossRefPubMedGoogle Scholar
  37. 37.
    Maiti S, Haupts U, Webb WW (1997) Proc Natl Acad Sci USA 94:11753CrossRefPubMedGoogle Scholar
  38. 38.
    Schwille P, Haustein E (2001) Biophysics Textbook Online: 1Google Scholar
  39. 39.
    Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Nature 355:564CrossRefPubMedGoogle Scholar
  40. 40.
    Soper SA, Shera EB, Martin JC, Jett JH, Hahn JH, Nutter HL, Keller RA (1991) Anal Chem 63:432CrossRefGoogle Scholar
  41. 41.
    Soper SA, Mattingly QL, Vegunta P (1993) Anal Chem 65:740CrossRefGoogle Scholar
  42. 42.
    Boukari H, Nossal R, Sackett DL (2003) Biochemistry 42:1292CrossRefPubMedGoogle Scholar
  43. 43.
    Hill E, de Mello A (2000) The Analyst 125:1033CrossRefGoogle Scholar
  44. 44.
    Bunfield DH, Davis LM (1998) Appl Opt 37:2315CrossRefPubMedGoogle Scholar
  45. 45.
    Emory JM, Soper SA (2008) Anal Chem 80:3897CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wonbae Lee
    • 1
  • Anne Obubuafo
    • 1
  • Yong-Ill Lee
    • 2
  • Lloyd M. Davis
    • 3
  • Steven A. Soper
    • 1
  1. 1.Department of ChemistryLouisiana State UniversityBaton RougeUSA
  2. 2.Department of ChemistryChangwon National UniversityChangwonSouth Korea
  3. 3.Center for Laser ApplicationsUniversity of Tennessee Space InstituteTullahomaUSA

Personalised recommendations