Journal of Fluorescence

, Volume 20, Issue 1, pp 143–151 | Cite as

Fluorescent Properties of a Hybrid Cadmium Sulfide-Dendrimer Nanocomposite and its Quenching with Nitromethane

  • Bruno B. Campos
  • Manuel Algarra
  • Joaquim C. G. Esteves da SilvaEmail author
Original Paper


A fluorescent hybrid cadmium sulphide quantum dots (QDs) dendrimer nanocomposite (DAB-CdS) synthesised in water and stable in aqueous solution is described. The dendrimer, DAB-G5 dendrimer (polypropylenimine tetrahexacontaamine) generation 5, a diaminobutene core with 64 amine terminal primary groups. The maximum of the excitation and emission spectra, Stokes’ shift and the emission full width of half maximum of this nanocomposite are, respectively: 351, 535, 204 and 212 nm. The fluorescence time decay was complex and a four component decay time model originated a good fit (χ = 1.20) with the following lifetimes: τ 1 = 657 ps; τ 2 = 10.0 ns; τ 3 = 59.42 ns; and τ 4 = 265 ns. The fluorescence intensity of the nanocomposite is markedly quenched by the presence of nitromethane with a dynamic Stern-Volmer constant of 25 M−1. The quenching profiles show that about 81% of the CdS QDs are located in the external layer of the dendrimer accessible to the quencher. PARAFAC analysis of the excitation emission matrices (EEM) acquired as function of the nitromethane concentration showed a trilinear data structure with only one linearly independent component describing the quenching which allows robust estimation of the excitation and emission spectra and of the quenching profiles. This water soluble and fluorescent nanocomposite shows a set of favourable properties to its use in sensor applications.


Dendrimers CdS quantum dots Fluorescence Quenching Nitromethane 



The authors would like to thanks the Fundação para a Ciência e Tecnologia (Lisboa, Portugal) under the frame of the Ciência 2007 program. Financial support from Fundação para a Ciência e Tecnologia (Lisboa, Portugal) (FSE-FEDER) (Project PTDC/QUI/71001/2006) and (Project PTDC/QUI/71336/2006) is acknowledged. C.M. Casado and B. Alonso (Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain) are acknowledged for providing samples of DAB dendrimers.


  1. 1.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  2. 2.
    Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed Engl 40:4128–4158CrossRefGoogle Scholar
  3. 3.
    Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer markers Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46CrossRefPubMedGoogle Scholar
  4. 4.
    Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Tr Cell Biol 14:497–504CrossRefGoogle Scholar
  5. 5.
    Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72CrossRefPubMedGoogle Scholar
  6. 6.
    Gerion G, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871CrossRefGoogle Scholar
  7. 7.
    Murphy CJ (2002) Optical sensing with quantum dots. Anal Chem 74:520A–526ACrossRefPubMedGoogle Scholar
  8. 8.
    Costa-Fernández JM, Pereiro R, Sanz-Medel A (2006) The use of luminescent quantum dots for optical sensing. Tr Anal Chem 25:207–218CrossRefGoogle Scholar
  9. 9.
    Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138CrossRefPubMedGoogle Scholar
  10. 10.
    Liang JG, Ai XP, He ZK, Pang DW (2004) Functionalized CdSe quantum dots asselective silver ion chemodosimeter. Analyst 129:619–622CrossRefPubMedGoogle Scholar
  11. 11.
    Chen JL, Zhu CQ (2005) Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal Chim Acta 546:147–153CrossRefGoogle Scholar
  12. 12.
    Chen J, Gao Y, Xu Z, Wu G, Chen Y, Zhu C (2006) A novel fluorescence array for mercury(II) ion in aqueous solution with functionalized dadmium selenide nanoclusters. Anal Chim Acta 577:77–84CrossRefPubMedGoogle Scholar
  13. 13.
    Ali EM, Zheng Y, Yu H, Ying JY (2007) Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal Chem 79:9452–9458CrossRefPubMedGoogle Scholar
  14. 14.
    Wang YQ, Ye C, Zhu ZH, Hu YZ (2008) Cadmium tellurium quantum dots as pH-sensitive probes for tiopronin determination. Anal Chim Acta 610:50–56CrossRefPubMedGoogle Scholar
  15. 15.
    Leitão JMM, Gonçalves HMR, Mendonça C, Esteves da Silva JCG (2008) Multiway chemometric decomposition of EEM of fluorescence of CdTe quantum dots obtained as function of pH. Anal Chim Acta 628:143–154CrossRefPubMedGoogle Scholar
  16. 16.
    Gonçalves HMR, Mendonça C, Esteves da Silva JCG (2009) PARAFAC analysisof the quenching of EEM of fluorescence of glutathione capped CdTe quantum dots by Pb(II). J Fluoresc 19:141–149CrossRefPubMedGoogle Scholar
  17. 17.
    Wang C, Zhao J, Wang Y, Lou N, Ma Q, Su X (2009) Sensitive Hg (II) ion detection by fluorescent multilayer films fabricated with quantum dots. Sensor Actuator B Chem 139:476–482CrossRefGoogle Scholar
  18. 18.
    Chang SQ, Dai YD, Kang B, Han W, Mao L, Chen D (2009) UV-enhanced cytotoxicity of thiol-capped CdTe quantum dots in human pancreatic carcinoma cells. Toxicol Lett 188:104–111CrossRefPubMedGoogle Scholar
  19. 19.
    Kuo YC, Wang Q, Ruengruglikit C, Yu H, Huang Q (2008) Antibody-conjugated CdTe quantum dots for Escherichia coli detection. J Phy Chem C 112:4818–4824CrossRefGoogle Scholar
  20. 20.
    Ballou B, Lagerholm C, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86CrossRefPubMedGoogle Scholar
  21. 21.
    Toprak E, Balci H, Blehm BH, Selvin PR (2007) Three-dimensional particle tracking via bifocal imaging. Nano Lett 7:2043–2045CrossRefPubMedGoogle Scholar
  22. 22.
    Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132CrossRefGoogle Scholar
  23. 23.
    Roovers J (2000) Advances in polymer science branched polymers II, vol. 143. Springer-Verlag, BerlinGoogle Scholar
  24. 24.
    Vogtle F, Richardt G, Werner N (2009) Dendrimer chemistry. Concepts, synthesis, properties, applications. Wiley-VCH, WeinheimGoogle Scholar
  25. 25.
    Gattas-Asfura KM, Leblanc RM (2003) Peptide coated CdS quantum dots as nanosensors for Cu2+ and Ag+ detection. Chem Commun 21:2684–2685CrossRefGoogle Scholar
  26. 26.
    Pileni MP, Motte L, Petit C (1992) Synthesis of cadmium sulfide in situ in revers emicelles: influence of preparation modes on size; polydispersity, and photochemical reactions. Chem Mater 4:338–345CrossRefGoogle Scholar
  27. 27.
    Gao Y, Reischmann S, Huber J, Hanke T, Bratschitsch R, Leitenstorfer A, Mecking S (2008) Encapsulating of single quantum dots into polymer particles. Colloid Polym Sci 286:1329–1334CrossRefGoogle Scholar
  28. 28.
    Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SH (2008) Emerging nanopharmaceuticals. Nanomedicine: Nanotech Biol Med 4:273–282CrossRefGoogle Scholar
  29. 29.
    Sooklal K, Hanus LH, Ploehn HJ, Murphy CJ (1998) A blue-emitting CdS/Dendrimer nanocomposite. Adv Mater 10:1083–1087CrossRefGoogle Scholar
  30. 30.
    Lakowicz JR, Gryczynski I, Gryczynski Z, Murphy CJ (1999) Luminescence spectral properties of CdS naoparticles. J Phys Chem 103:7613–7620Google Scholar
  31. 31.
    Lemon BI, Crooks RM (2000) Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots. J Am Chem Soc 122:12886–12887CrossRefGoogle Scholar
  32. 32.
    Gayen SK, Brito M, Das BB, Comanescu G, Liang XC, Alrubaiee M, Alfano RR, González C, Byro AH, Bauer DLV, Balogh-Nair V (2007) Synthesis and optical spectroscopy of a hybrid cadmium sulfide-dendrimer nanocomposite. J Opt Soc Am B 24:3064–3071CrossRefGoogle Scholar
  33. 33.
    Juan JY, Jun LY, Ping LG, Jie L, Feng WY, Qin YR, Tinga LW (2008) Forensic science intern. Application of photoluminescent CdS/PAMAM nanocomposites in fingerprint detection. Forensic Sci Intern 179:34–38CrossRefGoogle Scholar
  34. 34.
    Wisher AC, Bronstein I, Chechik V (2006) Thiolated PAMAM dendrimer-coated CdSe/ZnSe nanoparticles as protein transfection agents. Chem Commun 15:1637–1639CrossRefGoogle Scholar
  35. 35.
    Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev 57:2106–2129CrossRefPubMedGoogle Scholar
  36. 36.
    Sánchez-Sancho F, Pérez-Inestrosa E, Suau R, Mayorga C, Torres MJ, Blanca M (2002) Dendrimers as carrier protein mimetics for IgE antibody recognition. Synthesis and characterization of densely penicilloylated dendrimers. Bioconjugate Chem 13:647–653CrossRefGoogle Scholar
  37. 37.
    Bouldin KK, Menzel ER, Takatsu M, Murdock RH (2000) Diimide-enhanced fingerprint detection with photoluminescent CdS/dendrimer nanocomposites. J Forensic Science 45:1239–1242Google Scholar
  38. 38.
    Booksh KS, Kowalski BR (1994) Theory of analytical chemistry. Anal Chem 66:782A–791ACrossRefGoogle Scholar
  39. 39.
    Harshman RA (1970) Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-mode factor analysis. UCLA Working Papers Phonetics 16:1–84Google Scholar
  40. 40.
    Esteves da Silva JCG, Novais SAG (1998) Trilinear PARAFAC decomposition of synchronous fluorescence spectra of mixtures of the major metabolites of acetylsalicylic acid. Analyst 123:2067–2070CrossRefGoogle Scholar
  41. 41.
    Esteves da Silva JCG, Leitão JMM, Costa FS, Ribeiro JLA (2002) Detection of verapamil drug by fluorescence and trilinear decomposition techniques. Anal Chim Acta 453:105–115CrossRefGoogle Scholar
  42. 42.
    Olivieri AC, Arancibia JA, Muñoz de la Peña A, Durán-Merás I, Mansilla AE (2004) Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares. Determination of methotrexate and leucovorin in human urine. Anal Chem 76:5657–5666CrossRefPubMedGoogle Scholar
  43. 43.
    Bro R, Kiers HAL (2003) A new efficient method to determining the number of components in PARAFAC models. J Chemometr 17:274–286CrossRefGoogle Scholar
  44. 44.
    Jie G, Liu B, Pan H, Zhu JJ, Chen HY (2007) Anal Chem 79:5574–5581CrossRefPubMedGoogle Scholar
  45. 45.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bruno B. Campos
    • 1
  • Manuel Algarra
    • 2
  • Joaquim C. G. Esteves da Silva
    • 1
    Email author
  1. 1.Centro de Investigação em Química, Departamento de Química, Faculdade de Ciências da Universidade do PortoPortoPortugal
  2. 2.Centro de Geologia do Porto, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations