Journal of Fluorescence

, Volume 20, Issue 1, pp 105–114

On the Resolution Capabilities and Limits of Fluorescence Lifetime Correlation Spectroscopy (FLCS) Measurements

  • Steffen Rüttinger
  • Peter Kapusta
  • Matthias Patting
  • Michael Wahl
  • Rainer Macdonald
Original Paper


Quantitative tests were performed in order to explore the practical limits of FLCS. We demonstrate that: a) FLCS yields precise and correct concentration values from as low as picomolar to micromolar concentrations; b) it is possible to separate four signal components in a single detector setup; c) diffusion times differing only 25% from each other can be resolved by separating a two component mixture based on the different fluorescence lifetimes of both components; d) most of the inherent technical limitations of conventional FCS are easily overcome by FLCS employing a single detector channel confocal detection scheme.


Fluorescence lifetime correlation spectroscopy (FLCS) Fluorescence correlation spectroscopy (FCS) Single molecule detection (SMD) Confocal laser scanning microscopy (CLSM) 

Supplementary material

10895_2009_528_MOESM1_ESM.doc (34 kb)
Supplemental Material 1(DOC 33.5 kb)


  1. 1.
    Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system & measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705–708. doi:10.1103/PhysRevLett.29.705 CrossRefGoogle Scholar
  2. 2.
    Elson EL, Magde D (1974) Fluorescence correlation spectroscopy: I. conceptual basis and theory. Biopolymers 13:1–27. doi:10.1002/bip.1974.360130102 CrossRefGoogle Scholar
  3. 3.
    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy: II. An experimental realization. Biopolymers 13:29–61. doi:10.1002/bip.1974.360130103 CrossRefPubMedGoogle Scholar
  4. 4.
    Rigler R, Widengren J (1990) Ultrasensitive detection of single molecules by fluorescence correlation spectroscopy. Bioscience 3:180–183Google Scholar
  5. 5.
    Thompson NL (1991) Topics in fluorescence spectroscopy, vol 1. Plenum, New York, p 337CrossRefGoogle Scholar
  6. 6.
    Widengren J, Mets Ü (2002) In: Zander C, Enderlein J, Keller RA (eds) Wiley-VCH, ISBN3-527-40310-8, pp 69–120Google Scholar
  7. 7.
    Meseth U, Wohland T, Rigler R, Vogel H (1999) Resolution of fluorescence correlation measurements. Biophys J 76(3):1619–1631. doi:10.1016/S0006-3495(99)77321-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72(4):1878–1886. doi:10.1016/S0006-3495(97)78833-7 CrossRefPubMedGoogle Scholar
  9. 9.
    Schwille P, Bieschke J, Oehlenschlager F (1997) Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys Chem 66(2-3):211–228. doi:10.1016/S0301-4622(97)00061-6 CrossRefPubMedGoogle Scholar
  10. 10.
    Rigler R, Földes-Papp Z, Meyer-Almes FJ, Sammet C, Volcker M, Schnetz A (1998) Fluorescence cross-correlation: a new concept for polymerase chain reaction. J Biotechnol 63(2):97–109. doi:10.1016/S0168-1656(98)00079-0 CrossRefPubMedGoogle Scholar
  11. 11.
    Kettling U, Koltermann A, Schwille P, Eigen M (1998) Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci USA 95(4):1416–1420. doi:10.1073/pnas.95.4.1416 CrossRefPubMedGoogle Scholar
  12. 12.
    Koltermann A, Kettling U, Bieschke J, Winkler T, Eigen M (1998) Rapid assay processing by integration of dual-color fluorescence cross-correlation spectroscopy: high throughput screening for enzyme activity. Proc Natl Acad Sci USA 95(4):1421–1426. doi:10.1073/pnas.95.4.1421 CrossRefPubMedGoogle Scholar
  13. 13.
    Winkler T, Kettling U, Koltermann A, Eigen M (1999) Confocal fluorescence coincidence analysis: an approach to ultra high-throughput screening. Proc Natl Acad Sci USA 96(4):1375–1378. doi:10.1073/pnas.96.4.1375 CrossRefPubMedGoogle Scholar
  14. 14.
    Heinze KG, Koltermann A, Schwille P (2000) Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis. Proc Natl Acad Sci USA 97(19):10377–10382. doi:10.1073/pnas.180317197 CrossRefPubMedGoogle Scholar
  15. 15.
    Bieschke J, Giese A, Schulz-Schaeffer W, Zerr I, Poser S, Eigen M, Kretzschmar H (2000) Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Proc Natl Acad Sci USA 97(10):5468–5473. doi:10.1073/pnas.97.10.5468 CrossRefPubMedGoogle Scholar
  16. 16.
    Medina MA, Schwille P (2002) Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. Bioessays 24(8):758–764. doi:10.1002/bies.10118 CrossRefPubMedGoogle Scholar
  17. 17.
    Kohl T, Heinze KG, Kuhlemann R, Koltermann A, Schwille P (2002) A Protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc Natl Acad Sci USA 99(19):12161–12166. doi:10.1073/pnas.192433499 CrossRefPubMedGoogle Scholar
  18. 18.
    Koppel D (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10:1938–1945CrossRefGoogle Scholar
  19. 19.
    Rüttinger S (2006) Confocal microscopy and quantitative single molecule techniques for metrology in molecular medicine. PhD thesis, TU-BerlinGoogle Scholar
  20. 20.
    Lamb DC, Schenk A, Röcker C, Scalfi-Happ C, Nienhaus GU (2000) Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection. Biophys J 79:1129–1138. doi:10.1016/S0006-3495(00)76366-1 CrossRefPubMedGoogle Scholar
  21. 21.
    Lamb DC, Müller BK, Bräuchle CH (2005) Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting. Curr Pharm Biotechnol 6:405–414. doi:10.2174/138920105774370625 CrossRefPubMedGoogle Scholar
  22. 22.
    Höbel M, Ricka J (1994) Dead-time and afterpulsing correction in multiphoton timing with nonideal detectors. Rev Sci Instrum 65(7):2326–2336. doi:10.1063/1.1144684 CrossRefGoogle Scholar
  23. 23.
    Enderlein J, Gregor I (2005) Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence correlation spectroscopy. Rev Sci Instrum 76:033102. doi:10.1063/1.1863399 CrossRefGoogle Scholar
  24. 24.
    Zhao M, Jin L, Chen B, Ding Y, Ma H, Chen D (2003) Afterpulsing and its correction in fluorescence correlation spectroscopy experiments. Appl Opt 42(19):4031–4036. doi:10.1364/AO.42.004031 CrossRefPubMedGoogle Scholar
  25. 25.
    Böhmer M, Wahl M, Rahn H-J, Erdmann R, Enderlein J (2002) Time-resolved fluorescence correlation spectroscopy. Chem Phys Lett 353:439–445. doi:10.1016/S0009-2614(02)00044-1 CrossRefGoogle Scholar
  26. 26.
    Benda A, Hof M, Wahl M, Patting M, Erdmann R, Kapusta P (2005) TCSPC upgrade of a confocal FCS microscope. Rev Sci Instrum 76:33106. doi:10.1063/1.1866814 CrossRefGoogle Scholar
  27. 27.
    Benda A, Fagulová V, Deyneka A, Enderlein J, Hof M (2006) Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: New perspectives in supported phospholipid bilayer research. Langmuir 22:9580–9585. doi:10.1021/la061573d CrossRefPubMedGoogle Scholar
  28. 28.
    Humpolíčková J, Benda A, Sykora J, Macháň R, Kral T, Gasinska B, Enderlein J, Hof M (2008) Equilibrium dynamics of spermine-induced plasmid DNA condensation revealed by fluorescence lifetime correlation spectroscopy. Biophys J 94:L17–L19. doi:10.1529/biophysj.107.122408 CrossRefPubMedGoogle Scholar
  29. 29.
    Humpolícková J, Beranová L, Stepánek M, Benda A, Procházka K, Hof M (2008) Fluorescence lifetime correlation spectroscopy reveals compaction mechanism of 10 and 49 kbp DNA and differences between polycation and cationic surfactant. J Phys Chem B 112:16823–16829CrossRefGoogle Scholar
  30. 30.
    Kapusta P, Wahl M, Benda A, Hof M, Enderlein J (2007) Fluorescence lifetime correlation spectroscopy. J Fluoresc 17:43–48. doi:10.1007/s10895-006-0145-1 CrossRefPubMedGoogle Scholar
  31. 31.
    Gregor I, Enderlein J (2007) Time-resolved methods in biophysics. Fluorescence lifetime correlation spectroscopy. Photochem Photobiol Sci 6:0013–0018CrossRefGoogle Scholar
  32. 32.
    Wahl M, Gregor I, Patting M, Enderlein J (2003) Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt Express 11:3583–3591PubMedCrossRefGoogle Scholar
  33. 33.
    Koberling F, Krämer B, Tannert S, Rüttinger S, Ortmann U, Patting M, Wahl M, Ewers B, Kapusta P, Erdmann R (2008) Recent advances in time-correlated single-photon counting. Proceedings of SPIE, 6862:686209Google Scholar
  34. 34.
    Wahl M, Koberling F, Patting M, Rahn H, Erdmann R (2004) Time-resolved confocal fluorescence imaging and spectroscopy system with single molecule sensitivity and sub-micrometer resolution. Curr Pharm Biotechnol 5:299–308. doi:10.2174/1389201043376841 CrossRefPubMedGoogle Scholar
  35. 35.
    Wahl M, Rahn H, Gregor I, Erdmann R, Enderlein J (2007) Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels. Rev Sci Instrum 78:033106. doi:10.1063/1.2715948 CrossRefPubMedGoogle Scholar
  36. 36.
    Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J (2007) Two focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. ChemPhysChem 8:433–443. doi:10.1002/cphc.200600638 CrossRefPubMedGoogle Scholar
  37. 37.
    Rüttinger S, Buschmann V, Krämer B, Erdmann R, Macdonald R, Koberling F (2007) Determination of the confocal volume for quantitative fluorescence correlation spectroscopy. Proceedings of SPIE 6630:66300DGoogle Scholar
  38. 38.
    Rüttinger S, Buschmann V, Krämer B, Erdmann R, Macdonald R, Koberling F (2008) Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. J Microsc 232(2):334–352Google Scholar
  39. 39.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Steffen Rüttinger
    • 1
  • Peter Kapusta
    • 2
  • Matthias Patting
    • 2
  • Michael Wahl
    • 2
  • Rainer Macdonald
    • 1
  1. 1.Physikalisch-Technische BundesanstaltBerlinGermany
  2. 2.PicoQuant GmbHBerlinGermany

Personalised recommendations