Journal of Fluorescence

, 19:141 | Cite as

PARAFAC Analysis of the Quenching of EEM of Fluorescence of Glutathione Capped CdTe Quantum Dots by Pb(II)

  • Helena Gonçalves
  • Conceição Mendonça
  • Joaquim C. G. Esteves da Silva
Original Paper


Glutathione capped CdTe quantum dots (QD) were synthesised using a simple experimental procedure and two samples were subjected of study (QD550 and QD600). The maximum of the excitation and emission spectra and the emission full width of half maximum of these two QD were: QD550, 307, 550 and 37 nm; QD600, 307, 600 and 39 nm. The steady state fluorescence properties of the two QD undergo variation when the pH of the aqueous solution is varied and are characterised by different apparent pKa: QD550, 5.2 ± 0.1; QD600, 6.3 ± 0.3. The fluorescence intensity of the QD550 is markedly quenched by the presence of micromolar quantities of Pb(II) ion (Stern–Volmer constant of about 7 × 105 M−1). PARAFAC analysis of the excitation emission matrices (EEM) of QD550 acquired as function of the Pb(II) ion showed that only one linearly independent component describes the quenching of the QD550 by the Pb(II) ion allowing robust estimation of the excitation and emission spectra and of the quenching profiles.


Quantum dots Glutathione Pb(II) ion Quenching of fluorescence EEM PARAFAC 



Financial support from Fundação para a Ciência e Tecnologia (Lisboa) (FSE-FEDER) (Projects PTDC/QUI/71001/2006 and POCTI/QUI/44614/2002) is acknowledged.


  1. 1.
    Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer markers Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46PubMedCrossRefGoogle Scholar
  2. 2.
    Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14:497–504PubMedCrossRefGoogle Scholar
  3. 3.
    Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72PubMedCrossRefGoogle Scholar
  4. 4.
    Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871CrossRefGoogle Scholar
  5. 5.
    Murphy CJ (2002) Optical sensing with quantum dots. Anal Chem 74:520A–526APubMedCrossRefGoogle Scholar
  6. 6.
    Green M, Harwood H, Barrowman C, Rahman P, Eggeman A, Festry F, Dobson P, Ng T (2007) A facile route to CdTe nanoparticles and their use in bio-labelling. J Mater Chem 17:1989–1994CrossRefGoogle Scholar
  7. 7.
    Barglik-Chory C, Remenyi C, Strohm H, Muller G (2004) Adjustment of the band gap energies of biostabilized CdS nanoparticles by application of statistical design of experiments. J Phys Chem B 108:7637–7640CrossRefGoogle Scholar
  8. 8.
    Bãumle M, Stanou D, Segura JM, Hovius R, Vogel H (2004) Highly fluorescent streptavidil-coated CdSe nanoparticles: preparation in water, characterization, and micropatterning. Langmuir 20:3828–3831PubMedCrossRefGoogle Scholar
  9. 9.
    Zheng Y, Gao S, Ying JY (2007) Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv Mater 19:376–380CrossRefGoogle Scholar
  10. 10.
    Zheng Y, Yang Z, Ying JY (2007) Aqueous synthesis of glutathione-capped ZnSe and Zn1 − xCdxSe alloyed quantum dots. Adv Mater 19:1475–1479CrossRefGoogle Scholar
  11. 11.
    Ali EM, Zheng Y, Yu H, Ying JY (2007) Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal Chem 79:9452–9458PubMedCrossRefGoogle Scholar
  12. 12.
    Tortiglione C, Quarta A, Tino A, Manna L, Cingolani R, Pellegrino T (2007) Synthesis and biological assay of GSH functionalized fluorescent quantum dots for staining hydra vulgaris. Bioconjug Chem 18:829–835PubMedCrossRefGoogle Scholar
  13. 13.
    Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138PubMedCrossRefGoogle Scholar
  14. 14.
    Jin WJ, Costa-Fernández JM, Pereiro R, Sanz-Mendel A (2004) Surface-modified CdSe quantum dots as luminescent probes for cyanide determination. Anal Chim Acta 522:1–8CrossRefGoogle Scholar
  15. 15.
    Liang JG, Ai XP, He ZK, Pang DW (2004) Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst 129:19–622CrossRefGoogle Scholar
  16. 16.
    Chen JL, Zhu CQ (2005) Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal Chim Acta 546:147–153CrossRefGoogle Scholar
  17. 17.
    Fernández-Arguelles MT, Jin WJ, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2005) Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescence measurements. Anal Chim Acta 549:20–25CrossRefGoogle Scholar
  18. 18.
    Chen J, Gao Y, Xu Z, Wu G, Chen Y, Zhu C (2006) A novel fluorescence array for mercury(II) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal Chim Acta 577:77–84PubMedCrossRefGoogle Scholar
  19. 19.
    Wang JH, Wang HQ, Zhang HL, Li XQ, Hua XF, Cao YC, Huang ZL, Zhao YD (2007) Purification of denatured bovine serum albumin coated CdTe quantum dots for sensitive detection of silver(I) ions. Anal Bioanal Chem 388:969–974PubMedCrossRefGoogle Scholar
  20. 20.
    Diao XL, Xia YS, Zhang TL, Li Y, Zhu CQ (2007) Fluorescence-detecting cationic surfactants using luminescence CdTe quantum dots as probes. Anal Bioanal Chem 388:1191–1197PubMedCrossRefGoogle Scholar
  21. 21.
    Wang YQ, Ye C, Zhu ZH, Hu YZ (2008) Cadmium tellurium quantum dots as pH-sensitive probes for tiopronin determination. Anal Chim Acta 610:50–56PubMedCrossRefGoogle Scholar
  22. 22.
    Chen J, Zheng A, Gao Y, He C, Wu G, Chen Y, Kai X, Zhu C (2007) Functionalized CdS quantum dots-based luminescence probe for detection of heavy metal and transition metal ions in aqueous solution. Spectrochim Acta A Mol Biomol Spectrosc 69:1044–1052. doi: 10.1016/j.saa.2007.06.021 PubMedCrossRefGoogle Scholar
  23. 23.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkGoogle Scholar
  24. 24.
    Booksh KS, Kowalski BR (1994) Theory of analytical chemistry. Anal Chem 66:782A–765ACrossRefGoogle Scholar
  25. 25.
    Harshman RA (1970) Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-mode factor analysis. UCLA Working Papers Phonetics 16:1–84Google Scholar
  26. 26.
    Leurgans S, Ross R (1992) Multilinear models: applications in spectroscopy. Stat Sci 7:289–310CrossRefGoogle Scholar
  27. 27.
    Bro R (1997) PARAFAC. Tutorial and applications. Chemom Intell Lab Syst 38:149–171CrossRefGoogle Scholar
  28. 28.
    Appellof CJ, Davidson ER (1981) Strategies for analysing data from video fluorometric monitoring of liquid chromatographic effluents. Anal Chem 53:2053–2056CrossRefGoogle Scholar
  29. 29.
    Burdick DS, Tu XM, McGown LB, Millican DW (1990) Resolution of multicomponent fluorescent mixtures by analysis of the excitation–emission–frequency array. J Chemom 4:15–28CrossRefGoogle Scholar
  30. 30.
    Sanchez E, Kowalski BR (1990) Tensorial resolution: a direct trilinear decomposition. J Chemom 4:29–45CrossRefGoogle Scholar
  31. 31.
    Smilde AK, Doornbos DA (1991) Three-way methods for the calibration of chromatographic systems: comparing PARAFAC and three-way PLS. J Chemom 5:345–360CrossRefGoogle Scholar
  32. 32.
    Smilde AK (1992) Three-way analyses problems and prospects. Chemom Intell Lab Syst 15:143–157CrossRefGoogle Scholar
  33. 33.
    Zeng Y, Hopke PK (1992) A new receptor model: a direct trilinear decomposition followed by a matrix reconstruction. J Chemom 6:65–83CrossRefGoogle Scholar
  34. 34.
    Esteves da Silva JCG, Novais SAG (1998) Trilinear PARAFAC decomposition of synchronous fluorescence spectra of mixtures of the major metabolites of acetylsalicylic acid. Analyst 123:2067–2070CrossRefGoogle Scholar
  35. 35.
    Esteves da Silva JCG, Leitão JMM, Costa FS, Ribeiro JLA (2002) Detection of verapamil drug by fluorescence and trilinear decomposition techniques. Anal Chim Acta 453:105–115CrossRefGoogle Scholar
  36. 36.
    Rodríguez-Cuesta MJ, Boqué R, Rius FX, Zamora DP, Galera MM, Frenich AG (2003) Determination of carbendazim, fuberidazole and thiabendazole by three-dimensional excitation–emission matrix fluorescence and parallel factor analysis. Anal Chim Acta 491:47–56CrossRefGoogle Scholar
  37. 37.
    Olivieri AC, Arancibia JA, Muñoz de la Peña A, Durán-Merás I, Mansilla AE (2004) Second-Order advantage achieved with four-way fluorescence excitation–emission–kinetic data processed by parallel factor analysis and trilinear least-squares. Determination of methotrexate and leucovorin in human urine. Anal Chem 76:5657–5666PubMedCrossRefGoogle Scholar
  38. 38.
    Rinnan Å, Andersen CM (2005) Handling of first order Rayleigh scatter in PARAFAC modelling of fluorescence excitation–emission data. Chemom Intell Lab Syst 76:91–99CrossRefGoogle Scholar
  39. 39.
    Nahorniak ML, Cooper GA, Kim Y, Booksh KS (2005) Three-and four-way parallel factor (PARAFAC) analysis of photochemically induced excitation–emission kinetic fluorescence spectra. Analyst 130:85–93PubMedCrossRefGoogle Scholar
  40. 40.
    Christensen J, Becker EM, Frederiksen CS (2005) Fluorescence spectroscopy and PARAFAC in the analysis of yogurt. Chemom Intell Lab Syst 75:201–208CrossRefGoogle Scholar
  41. 41.
    Holbrook RD, Yen JH, Grizzard TJ (2006) Characterizing natural organic material from the Occoquan Watershed (Northern Virginia, US) using fluorescence spectroscopy and PARAFAC. Sci Total Environ 361:249–266PubMedCrossRefGoogle Scholar
  42. 42.
    Leitão JMM, Esteves da Silva JCG, Girónc AJ, Muñoz de la Peña A (2008) Optimization of Verapamil drug analysis by Excitation–Emission fluorescence in combination with second-order multivariate calibration. J Fluoresc (in press)Google Scholar
  43. 43.
    Bro R, Kiers HAL (2003) A new efficient method to determining the number of components in PARAFAC models. J Chemom 17:274–286CrossRefGoogle Scholar
  44. 44.
    Huang J, Sooklal K, Murphy CJ, Ploehn HJ (1999) Polyamine-quantum dots nanocomposites: linear versus starburst stabilizer architectures. Chem Mater 11:595–3601Google Scholar
  45. 45.
    Li L, Qian H, Fang N, Ren J (2006) Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentration of precursors solutions. J Luminesc 116:59–66CrossRefGoogle Scholar
  46. 46.
    Deng Z, Zhang Y, Yue J, Tang F, Wei Q (2007) Green and orange quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. J Phys Chem B 111:12024–12031PubMedCrossRefGoogle Scholar
  47. 47.
    Skoog DA, West DM, Holler FJ (1996) Fundamentals of analytical chemistry, 7th edn. Saunders College, Fort WorthGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Helena Gonçalves
    • 1
  • Conceição Mendonça
    • 1
  • Joaquim C. G. Esteves da Silva
    • 1
  1. 1.Centro de Investigação em Química, Departamento de QuímicaFaculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations