Journal of Fluorescence

, Volume 18, Issue 5, pp 1007–1019 | Cite as

Photophysical and Complexation Properties of Benzenesulfonamide Derivatives with Different Donor and Acceptor Moieties

  • G. Özturk
  • M. Förstel
  • Y. Ergun
  • S. Alp
  • W. RettigEmail author
Oriinal Paper


Pyrrolobenzosulfonamide, indolobenzosulfonamide and carbazolobenzosulfonamide derivatives with different acceptor groups were synthesized and their photophysical properties were compared. The electron donor linking sites are found to influence the emission characteristics of these compounds while acceptor linking sites have no noticeable effects on the spectral properties. P2-A5 which is a C–C linked pyrrole derivative exhibited different spectral properties from the C–N linked pyrrole derivatives. The complexation properties of the molecules were also investigated employing Na (I), Ca (II), Li (I), Mg (II), Zn (II) and Cu (II) ions.


Fluorescence Sulfonamide Photophysics Pyrrole Indole Carbazole 



The Scientific and Technological Research Council of Turkey’s 2214-Reseach Fellowship Program is gratefully acknowledged. We thank to Dr. Julia Bricks, Dr. Wilfried Weigel, Mrs. Annette Rothe and Lars Lasoggaa for experimental help.


  1. 1.
    Malval, Lapouyade R, Leger, Jarry C (2003) Tripodal ligand incorporating dual fluorescent ionophore: a coordinative control of photoinduced electron transfer. Photochem Photobiol Sci 2:259–266PubMedCrossRefGoogle Scholar
  2. 2.
    Parusel ABJ (2000) A DFT/MRCI study on the excited state charge transfer states of N-pyrrolobenzene, N-pyrrolobenzonitrile and 4-N,N-dimethylaminobenzonitrile. Phys Chem Chem Phys 2:5545–5552CrossRefGoogle Scholar
  3. 3.
    Shao H, Chen X, Wang Z, Lu P (2007) Synthesis and fluorescence properties of carbazole and fluorine-based compounds. J Lumin 127:349–354CrossRefGoogle Scholar
  4. 4.
    Marder S, Kippelen B, Yen A, Peyghambarian N (1997) Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388:845–851CrossRefGoogle Scholar
  5. 5.
    Marder S, Kippelen B, Yen A, Peyghambarian N (1994) Chem Rev 94 (special issue)Google Scholar
  6. 6.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, HinghamGoogle Scholar
  7. 7.
    Li YQ, Bricks JL, Resch-Genger U, Spieles M, Rettig W (2006) Bifunctional charge transfer operated fluorescent probes with acceptor and donor receptors. 2. Bifunctional cation coordination behavior of biphenyl-type sensor molecules incorporating 2,2¢:6¢,2¢-terpyridene acceptors. J Phys Chem A 110:10972–10984PubMedCrossRefGoogle Scholar
  8. 8.
    Gokel GW, Leevy WM, Weber ME (2004) Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 104:2723–2750PubMedCrossRefGoogle Scholar
  9. 9.
    Rettig W (1986) Charge separation in excited states of decoupled systems—TICT compounds and implications regarding the development of new laser dyes and the primary processes of vision and photosynthesis. Angew Chem Angew Chem Int Ed Engl 25:971–988CrossRefGoogle Scholar
  10. 10.
    Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4031PubMedCrossRefGoogle Scholar
  11. 11.
    Schopf G, Rettig W, Bendig J (1994) Quenching of TICT fluorescence by electron donors. J Photochem Photobiol A Chem 84:33–37CrossRefGoogle Scholar
  12. 12.
    Braun D, Rettig W, Delmond S, Letard J-F, Lapouyade R (1997) Amide derivatives of DMABN: a new class of dual fluorescent compounds. J Phys Chem A 101:6836–6841CrossRefGoogle Scholar
  13. 13.
    Malval J-P, Chaimbault C, Fischer B, Morand J-P, Lapouyade R (2001) Optical and electrochemical cations recognition and release from N-azacrown carbazoles. Res Chem Intermed 27:21–34CrossRefGoogle Scholar
  14. 14.
    Leray I, Habib-Jiwan J-L, Branger C, Soumillion J-Ph, Valeur B (2000) Ion-responsive fluorescent compounds: VI. Coumarin 153 linked to rigid crowns for improvement of selectivity. J Photochem Photobiol A Chem 135:163–169CrossRefGoogle Scholar
  15. 15.
    Habib-Jiwan J-L, Branger C, Soumillion J-Ph, Valeur B (1998) Ion-responsive fluorescent compounds V. Photophysical and complexing properties of coumarin 343 linked to monoaza-15-crown-5. J Photochem Photobiol A Chem 116:127–133CrossRefGoogle Scholar
  16. 16.
    Dodiuk H, Cosower EM (1977) Intramolecular donor–acceptor systems. 2.substituent effects on the fluorescence probes: 6-(N-Arylamino)-2-naphthalenesulfonamides. J Phys Chem 81:50–54CrossRefGoogle Scholar
  17. 17.
    Kossower EM, Dodiuk H, Tanizawa K, Ottolenghi M, Orbach N (1975) Intramolecular donor–acceptor systems. Radiative and nonradiative processes for the excited States of 2-N-Arylamino-6-naphthalenesulfonates. J Am Chem Soc 97(8):2167–2178CrossRefGoogle Scholar
  18. 18.
    Kanety H, Kosower EM (1982) Multiple fluorescences. 6. The case of 1,8-naphthosultam. J Phys Chem 80:3776–3780CrossRefGoogle Scholar
  19. 19.
    Kosower EM, Dodiuk H (1978) Intramolecular donor-acceptor systems. 3. A third type of emitting singlet state for N-Alkyl-6-N-arylamino-2-naphthalenesulfonates. Solvent modulation of substituent effects on charge-transfer emission. J Am Chem Soc 100(3):4173–4179CrossRefGoogle Scholar
  20. 20.
    Kosower EM (1982) Inramolecular donor–acceptor systems. 9. Photophysics of (Phenylamino)naphthalenesulfonates: a paradigm for excited-state intramolecular charge transfer. Acc Chem Res 15:259–266CrossRefGoogle Scholar
  21. 21.
    Kosower EM, Kanety H, Dodiuk H, Striker G, Jovin T, Boni H, Huppert D (1983) Inramolecular donor–acceptor systems. 7. Solvent dielectric relaxation effects on the photophysics of 6-(Phenyamino)-N,N-dimethyl-2-naphthalenesulfonamides. J Phys Chem 87:2479–2484CrossRefGoogle Scholar
  22. 22.
    Kosower EM, Kanety H (1983) Inramolecular donor–acceptor systems. 10. Multiple fluorescences from 8-(Phenylamino)-1-naphthalenesulfonates. J Am Chem Soc 105:6236–6243CrossRefGoogle Scholar
  23. 23.
    Saczewski J, Brzowski Z, Saczewski F, Bednarski PJ, Liebeke M, Gdaniec M (2006) Synthesis and in vitro anti-tumor activity of N-{1-[(3-thioxo-5, 6-dihydroimidazo[2,1-c][1,2,4]thiadiazol-7-ylthio)thiocarbonyl]2-imidazolidene}arylsulfonamides. Bioorg Med Chem Lett 16:3663–3667PubMedCrossRefGoogle Scholar
  24. 24.
    Djakovitch L, Rouge P, Zaidi R (2007) Selective arylation of 2-substituted indoles towards 1,2- and 2,3-functional indoles directed through the catalytic system. Catalysis Communications 8:1561–1566CrossRefGoogle Scholar
  25. 25.
    Mann G, Hartwig JF, Driver MS, Fernandez-Rivas C (1998) Palladium-catalyzed C–N (sp2) bond formation: N-arylation of aromatic and unsaturated nitrogen and the reductive elimination chemistry of palladium azolyl methyleneamido complexes. J Am Chem Soc 120:827–828CrossRefGoogle Scholar
  26. 26.
    Parker CA (1968) Photoluminescence of solutions. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Meech SR, Phillips D (1983) Photophysics of some common fluorescence standards. J Photochem 23:193–217CrossRefGoogle Scholar
  28. 28.
    O_Connor DV, Phillips D (1984) Time correlated single photon counting. Academic, LondonGoogle Scholar
  29. 29.
    Rettig W, Marschner F (1990) Molecular conformation and biradicaloid charge transfer states in substituted N-phenylpyrroles. New J Chem 14:819–824Google Scholar
  30. 30.
    Rettig W, Zander M (1982) On twisted intramolecular charge transfer (TICT) states in N-aryl carbazoles. Chem Phys Lett 87:229–234CrossRefGoogle Scholar
  31. 31.
    Murali S, Changenet-Barret P, Ley C, Plaza P, Rettig W, Martin MM, Lapuyade R (2005) Photophysical properties of pyrrolobenzenes with different linking and substitution pattern: the transition between charge transfer states with large (MICT) and small (TICT) resonance interaction. Chem Phys Lett 411:192–197CrossRefGoogle Scholar
  32. 32.
    Murali S, Rettig W (2005) Meta-positioning effect in sterically hindered N-phenyl-pyrroles: a photophysical study. Chem Phys Lett 412:135–140CrossRefGoogle Scholar
  33. 33.
    Lippert EZ (1955) Naturforsch 10a:541Google Scholar
  34. 34.
    Mataga N, Kaifu Y, Kazumi M Bull Chem Soc Jpn 1955, 28, 690; 1956, 29, 645Google Scholar
  35. 35.
    Weigel W, Rettig W, Dekhtyrar M, Modrakowski C, Beinhoff M, Schlueter AD (2003) Dual fluorescence of phenyl and biphenyl substituted pyrene derivatives. J Phys Chem A 107:5941–5947CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • G. Özturk
    • 1
  • M. Förstel
    • 2
  • Y. Ergun
    • 1
  • S. Alp
    • 1
  • W. Rettig
    • 2
    Email author
  1. 1.Department of Chemistry, Faculty of Arts and SciencesUniversity of Dokuz EylulIzmirTurkey
  2. 2.Institut für ChemieHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations