Journal of Fluorescence

, Volume 19, Issue 1, pp 53–62 | Cite as

Nucleosome Dynamics as Studied by Single-pair Fluorescence Resonance Energy Transfer: A Reevaluation

Original Paper


Accessibility of nucleosomal DNA to protein factor binding is ensured by at least three mechanisms: post-synthetic modifications to the histones, chromatin remodeling, and spontaneous unwrapping of the DNA from the histone core. We have previously used single-pair fluorescence resonance energy transfer (spFRET) experiments to investigate long-range conformational fluctuations in nucleosomal DNA (Tomschik M, Zheng H, van Holde K, Zlatanova J, Leuba SH in Proc Natl Acad Sci USA 102(9):3278–3283, 2005). Recent work has drawn attention to a major artifact in such studies due to photoblinking of the acceptor fluorophore. We have now used formaldehyde-crosslinked nucleosomes and imaging in the presence of Trolox, an efficient triplet-state quencher that suppresses photoblinking, to reevaluate our previous conclusions. Careful analysis of the data indicates that most of the events previously characterized as nucleosome ‘opening’ must have corresponded to photoblinking. There is, nevertheless, evidence for the existence of infrequent, rapid opening events.


Evanescent field fluorescence microscope Nucleosome DNA unwrapping nucleosome opening photoblinking 



We thank Dr. Ivan Rasnik (Emory University, Atlanta, GA) for help with the IDL and Matlab based data analysis, for valuable discussions and critical reading the manuscript. We thank Dr. Jean-Mark Victor (Université Pierre et Marie Curie, Paris) for providing the all-atom models for Fig. 1a, and for useful discussions on the gaping transition. This work was supported in part by NSF grant 0504239 to JZ, Eppley Foundation for Scientific Research to MT, and start-up funds from the University of Wyoming.


  1. 1.
    Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45PubMedCrossRefGoogle Scholar
  2. 2.
    Turner BM (1993) Decoding the nucleosome. Cell 75(1):5–8PubMedGoogle Scholar
  3. 3.
    van Holde K, Zlatanova J (2006) Scanning chromatin: a new paradigm? J Biol Chem 281(18):12197–12200PubMedCrossRefGoogle Scholar
  4. 4.
    Li G, Levitus M, Bustamante C, Widom J (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol 12(1):46–53PubMedCrossRefGoogle Scholar
  5. 5.
    Li G, Widom J (2004) Nucleosomes facilitate their own invasion. Nat Struct Mol Biol 11(8):763–769PubMedCrossRefGoogle Scholar
  6. 6.
    Polach KJ, Widom J (1995) Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254(2):130–149PubMedCrossRefGoogle Scholar
  7. 7.
    Tomschik M, Zheng H, van Holde K, Zlatanova J, Leuba SH (2005) Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer. Proc Natl Acad Sci USA 102(9):3278–3283PubMedCrossRefGoogle Scholar
  8. 8.
    Marky NL, Manning GS (1991) The elastic resilience of DNA can induce all-or-none structural transitions in the nucleosome core particle. Biopolymers 31(13):1543–1557PubMedCrossRefGoogle Scholar
  9. 9.
    Marky NL, Manning GS (1995) A theory of DNA dissociation from the nucleosome. J Mol Biol 254(1):50–61PubMedCrossRefGoogle Scholar
  10. 10.
    Schiessel H (2006) The nucleosome: a transparent, slippery, sticky and yet stable DNA-protein complex. Eur Phys J E Soft Matter 19(3):251–262PubMedCrossRefGoogle Scholar
  11. 11.
    Brower-Toland BD, Smith CL, Yeh RC, Lis JT, Peterson CL, Wang MD (2002) Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc Natl Acad Sci USA 99(4):1960–1965PubMedCrossRefGoogle Scholar
  12. 12.
    Ambrose WP, Goodwin PM, Keller RA, Martin JC (1994) Alterations of single molecule fluorescence lifetimes in near-field optical microscopy. Science 265(5170):364–367PubMedCrossRefGoogle Scholar
  13. 13.
    Dunn RC, Xie X, Simon JD (1993) Real-time spectroscopic techniques for probing conformational dynamics of heme proteins. Methods Enzymol 226:177–198PubMedCrossRefGoogle Scholar
  14. 14.
    Bagshaw CR, Cherny D (2006) Blinking fluorophores: what do they tell us about protein dynamics? Biochem Soc Trans 34(Pt 5):979–982PubMedGoogle Scholar
  15. 15.
    Schuster J, Cichos F, von Borczykowski C (2005) Blinking of single dye molecules in various environments. Opt Spectrosc 98:712–717CrossRefGoogle Scholar
  16. 16.
    Widengren J, Schwille P (2000) Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. J Phys Chem 104:6416–6428Google Scholar
  17. 17.
    Sabanayagam CR, Eid JS, Meller A (2005) Long time scale blinking kinetics of cyanine fluorophores conjugated to DNA and its effect on Forster resonance energy transfer. J Chem Phys 123(22):224708PubMedCrossRefGoogle Scholar
  18. 18.
    Bates M, Blosser TR, Zhuang X (2005) Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett 94(10):108101PubMedCrossRefGoogle Scholar
  19. 19.
    Heilemann M, Margeat E, Kasper R, Sauer M, Tinnefeld P (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127(11):3801–3806PubMedCrossRefGoogle Scholar
  20. 20.
    Sabanayagam CR, Eid JS, Meller A (2005) Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: corrections due to nonideal transfer. J Chem Phys 122(6):061103PubMedCrossRefGoogle Scholar
  21. 21.
    Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3(11):891–893PubMedCrossRefGoogle Scholar
  22. 22.
    Adams CC, Workman JL (1995) Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol Cell Biol 15(3):1405–1421PubMedGoogle Scholar
  23. 23.
    An W, Leuba SH, van Holde K, Zlatanova J (1998) Linker histone protects linker DNA on only one side of the core particle and in a sequence-dependent manner. Proc Natl Acad Sci USA 95(7):3396–3401PubMedCrossRefGoogle Scholar
  24. 24.
    Simpson RT, Thoma F, Brubaker JM (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42(3):799–808PubMedCrossRefGoogle Scholar
  25. 25.
    Tomschik M, Karymov MA, Zlatanova J, Leuba SH (2001) The archaeal histone-fold protein HMf organizes DNA into bona fide chromatin fibers. Structure 9(12):1201–1211PubMedCrossRefGoogle Scholar
  26. 26.
    Zheng H, Tomschik M, Zlatanova J, Leuba SH (2005) In: Golemis E, Adams P (eds) Protein-protein interactions, a molecular cloning manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–16Google Scholar
  27. 27.
    Harada Y, Sakurada K, Aoki T, Thomas DD, Yanagida T (1990) Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol Biol 216(1):49–68PubMedCrossRefGoogle Scholar
  28. 28.
    Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, Chu S (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419(6907):638–641PubMedCrossRefGoogle Scholar
  29. 29.
    Rasnik I, McKinney SA, Ha T (2005) Surfaces and orientations: much to FRET about? Acc Chem Res 38(7):542–548PubMedCrossRefGoogle Scholar
  30. 30.
    Sofia SJ, Premnath VV, Merrill EW (1998) Poly(ethylene oxide) Grafted to silicon surfaces: grafting density and protein adsorption. Macromolecules 31(15):5059–5070PubMedCrossRefGoogle Scholar
  31. 31.
    Rasnik I, Myong S, Cheng W, Lohman TM, Ha T (2004) DNA-binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymes. J Mol Biol 336(2):395–408PubMedCrossRefGoogle Scholar
  32. 32.
    Jackson V (1999) Formaldehyde cross-linking for studying nucleosomal dynamics. Methods 17(2):125–139PubMedCrossRefGoogle Scholar
  33. 33.
    McGhee JD, von Hippel PH (1975) Formaldehyde as a probe of DNA structure. II. Reaction with endocyclic imino groups of DNA bases. Biochemistry 14(6):1297–1303PubMedCrossRefGoogle Scholar
  34. 34.
    McGhee JD, von Hippel PH (1975) Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases. Biochemistry 14(6):1281–1296PubMedCrossRefGoogle Scholar
  35. 35.
    Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25(1):78–86PubMedCrossRefGoogle Scholar
  36. 36.
    Koopmans WJ, Brehm A, Logie C, Schmidt T, van Noort J (2007) Single-pair FRET microscopy reveals mononucleosome dynamics. J Fluoresc 17(6):785–795PubMedCrossRefGoogle Scholar
  37. 37.
    Mozziconacci J, Lavelle C, Barbi M, Lesne A, Victor JM (2006) A physical model for the condensation and decondensation of eukaryotic chromosomes. FEBS Lett 580(2):368–372PubMedCrossRefGoogle Scholar
  38. 38.
    Mozziconacci J, Victor JM (2003) Nucleosome gaping supports a functional structure for the 30 nm chromatin fiber. J Struct Biol 143(1):72–76PubMedCrossRefGoogle Scholar
  39. 39.
    Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S (2004) Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci USA 101(24):8936–8941PubMedCrossRefGoogle Scholar
  40. 40.
    Margeat E, Kapanidis AN, Tinnefeld P, Wang Y, Mukhopadhyay J, Ebright RH, Weiss S (2006) Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophys J 90(4):1419–1431PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Molecular Biology, College of AgricultureUniversity of WyomingLaramieUSA
  2. 2.Department of Biochemistry and BiophysicsOregon State UniversityCorvallisUSA

Personalised recommendations