Advertisement

Journal of Fluorescence

, 18:1181 | Cite as

Comparative Studies of Diphenyl-Diketo-Pyrrolopyrrole Derivatives for Electroluminescence Applications

  • Martin ValaEmail author
  • Martin Weiter
  • Jan Vyňuchal
  • Petr Toman
  • Stanislav LuňákJr.
Original Paper

Abstract

Four different derivatives of diphenyl-diketo-pyrrolopyrrole (DPP) with alkyl side groups were synthesized to increase their solubility. Quantum chemical calculations revealed that the substitution influenced molecular geometry and subsequently modified absorption and photoluminescence spectra. The theoretical results were confirmed by experimental characterization. With increasing phenyl torsion the vibrational structure was less pronounced and larger Stokes shift was observed. Simultaneously, the molar absorption coefficient decreased as the deformation increased. On the other hand, the measured fluorescence quantum yields were modified only slightly. This indicates the possibility to prepare soluble derivatives without loss of quantum yields and to use these materials for construction of efficient and stable electroluminescent devices. Furthermore, the electroluminescence of the thin layer devices based on the soluble low molecular DPPs were characterized and discussed.

Keywords

Diphenyl-diketo-pyrrolopyrrole Organic light emitting diodes OLED Organic electronics Electroluminescence 

Notes

Acknowledgement

The research was supported by the Ministry of Industry and Trade of the Czech Republic via Tandem project No. FT-TA3/048 and by the Grant Agency of the Academy of Sciences of the Czech Republic via project A401770601.

References

  1. 1.
    Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Brédas JL, Lögdlund M, Salaneck WR (1999) Electroluminescence in conjugated polymers. Nature 397:121–128CrossRefGoogle Scholar
  2. 2.
    Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Beyerlein T, Tieke B, Forero-Lengerb S, Brütting W (2002) Red electroluminescence from a 1,4-diketopyrrolo[3,4-c]pyrrole (DPP)-based conjugated polymer. Synthetic Metals 130(2):115–119CrossRefGoogle Scholar
  4. 4.
    Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst 108:1067CrossRefGoogle Scholar
  5. 5.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Computer program Gaussian 03. Gaussian, WallingfordGoogle Scholar
  6. 6.
    Becke AD (1993) Density-functional thermochemistry, 3. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  7. 7.
    Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  8. 8.
    Toman P, Nešpůrek S, Yakushi K (2002) Electronic states and infrared spectroscopy of Ni- and Co-phthalocyanines: neutral and oxidized forms. J Porphyr Phthalocya 6(9–10):556–562CrossRefGoogle Scholar
  9. 9.
    Ignatyev IS, Sundius T (2000) Competitive ring hydride shifts and tolyl-benzyl rearrangements in tolyl and silatolyl cations. Chem Phys Lett 326(1–2):101–108CrossRefGoogle Scholar
  10. 10.
    Guo J-D, Luo Y, Himo F (2002) Density functional theory study of the canthaxanthin and other carotenoid radical cations. Chem Phys Lett 366(1–2):73–81CrossRefGoogle Scholar
  11. 11.
    Gross EKU, Dobson JF, Petersilka M (1996) Density functional theory II. In: Nalewajski RF (ed) Topics in current chemistry, vol 181. Springer, Berlin, pp 81–172Google Scholar
  12. 12.
    Casida ME (1995) Time-dependent density functional response theory for molecules. In: (ed) Recent advances in density-functional methods, part I. World Scientific, Singapore, pp 155–192Google Scholar
  13. 13.
    Takahashi M, Kira M, Sakamoto K, Müller T, Apeloig Y (2001) Theoretical prediction of vertical transition energies of diaminosilylenes and aminosubstituted disilenes. J Comput Chem 22(13):1536–1541CrossRefGoogle Scholar
  14. 14.
    Nijegorodov N (2006) The influence of planarity, rigidity and internal heavy atom upon fluorescence parameters and the intersystem crossing rate constant in molecules with the biphenyl basis. Spectrochimica Acta Part A 64:1–5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Martin Vala
    • 1
    Email author
  • Martin Weiter
    • 1
  • Jan Vyňuchal
    • 2
  • Petr Toman
    • 3
  • Stanislav LuňákJr.
    • 4
  1. 1.Faculty of ChemistryBrno University of TechnologyBrnoCzech Republic
  2. 2.Research Institute of Organic SynthesesRybitviCzech Republic
  3. 3.Institute of Macromolecular Chemistry As CR, v. v. i.Prague 6Czech Republic
  4. 4.Department of Technology of Organic Compounds, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations