Advertisement

Journal of Fluorescence

, Volume 18, Issue 3–4, pp 685–693 | Cite as

Preparation, Characterization and Photophysical Properties of Highly Luminescent Terbium Complexes Incorporated Into SiO2/Polymer Hybrid Material

  • Li Xu
  • Yu-Fei Ma
  • Kuan-Zhen Tang
  • Yu TangEmail author
  • Wei-Sheng Liu
  • Min-Yu Tan
Original Paper

Abstract

Two new highly luminescent Tb(III) coordination complexes of β-diketone ligands, [TbLІ(NO3)3(H2O)] 1 [LІ=N-(2-pyridinyl)ketoacetamide] and [TbLІІ 2(NO3)2(C3H6O)][TbLІІ(NO3)4] 2 [LІІ=N-(6-(4-methylpyridinyl))ketoacetamide], were synthesized and characterized by single crystal X-ray diffraction, and incorporated into SiO2/polymer hybrid material by sol–gel method resulting in a novel ternary molecular hybrid material. The Tb(III) complexes display characteristic metal-centered luminescence while the ligands emission are completely quenched, showing that efficient ligand-to-metal energy transfer (antenna effect) occurs. The gels can exhibit the characteristic emission bands of terbium ion. In addition, terbium ions present longer fluorescence lifetime in gels than in the corresponding pure complexes powders. Compared with the complexes, the unit mass luminescence intensities of the gels are enhanced. And the increase extent of luminescence intensity of the gel is influenced by the substituent of the ligands. At the same time, concentration effects on the luminescence intensity were investigated. The photo stabilities of the gels under UV radiation are much better than those of the pure terbium complexes.

Keywords

Terbium complexes β-Diketone ligands Hybrid materials SiO2/polymer matrix Photophysical properties 

Notes

Acknowledgment

The authors are grateful to the National Natural Science Foundation of China (project 20401008), the program for New Century Excellent Talents in University (NCET-06-0902) and the Natural Science Foundation of Gansu Province (project no. 3ZS061-A25-003). The cif files of the structures are available from the authors.

References

  1. 1.
    Weissman SI (1942) Intramolecular energy transfer the fluorescence of complexes of europium. J Chem Phys 10(4):214–217CrossRefGoogle Scholar
  2. 2.
    Forsberg JH (1981) Gmelin handbook of inorganic chemistry, Sc, Y, La-Lu rare earth elements, 3rd edn. Springer, Berlin, pp 65–251 (and references therein)Google Scholar
  3. 3.
    Melby LR, Rose NJ, Abramson E, Caris JC (1964) Synthesis and fluorescence of some trivalent lanthanide complexes. J Am Chem Soc 86(23):5117–5125CrossRefGoogle Scholar
  4. 4.
    Drake SR, Lyons A, Otway DJ, Slwain AMZ, Williams DJ (1993) Lanthanide b-diketonate glyme complexes exhibiting unusual co-ordination modes. J Chem Soc, Dalton Trans 15:2379–2386CrossRefGoogle Scholar
  5. 5.
    Wang CY, Yang ZJ, Li Y, Gong LW, Zhao GW (2002) Preparation of thin films of ternary complex of europium with 2-thenoyltrifluoroacetone and o-phenanthroline. Phys Status Solid A 191(1):117–124CrossRefGoogle Scholar
  6. 6.
    Zhong GL, Kim K, Jin JI (2002) Intermolecular energy transfer in photo- and electroluminescence properties of a europium(III) complex dispersed in poly(vinylcarbazole). Synth Met 129(2):193–198CrossRefGoogle Scholar
  7. 7.
    Adachi C, Baldo MA, Forrest SR (2000) Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host. J Appl Phys 87(11):8049–8055CrossRefGoogle Scholar
  8. 8.
    Sano T, Fujita M, Fujii T, Hamada Y, Shibata K, Kuroki K (1995) Novel europium complex for electroluminescent devices with sharp red emission. Jpn J Appl Phys 34(4A):1883–1887CrossRefGoogle Scholar
  9. 9.
    Li HH, Inoue S, Machida K, Adachi G (1999) Preparation and luminescence properties of organically modified silicate composite phosphors doped with an europium(III) b-diketonate complex. Chem Mater 11(11):3171–3176CrossRefGoogle Scholar
  10. 10.
    Samelson H, Lempicki A, Brophy VA, Brecher C (1964) Laser phenomena in europium chelates. I. Spectroscopic properties of europium benzoylacetonate. J Chem Phys 40(9):2547–2553CrossRefGoogle Scholar
  11. 11.
    Bjorklund S, Kellermeyer G, Hurt CR, McAoy N, Filipescu N (1967) Laser action from terbium trifluoroacetylacetonate in p-dioxane and acetonitrile at room temperature. Appl Phys Lett 10(5):160–162CrossRefGoogle Scholar
  12. 12.
    Whittakker B (1970) Low threshold laser action of a rare earth chelate in liquid and solid host media. Nature 228:157–159CrossRefGoogle Scholar
  13. 13.
    Dawson WR, Kropp JL, Windsor MW (1966) Internal-energy-transfer efficiencies in Eu3 + and Tb3+chelates using excitation to selected ion levels. J Chem Phys 45(7):2410–2418CrossRefGoogle Scholar
  14. 14.
    Crosby GA, Whan RE, Alire RM (1961) Intramolecular energy transfer in rare earth chelates. role of the triplet state. J Chem Phys 34(3):743–748CrossRefGoogle Scholar
  15. 15.
    Filipescu N, Sager WF, Serafin FA (1964) Substituent effects on intramolecular energy transfer. II. Fluorescence spectra of eeuropium and terbium β-diketone chelates. J Phys Chem 68(11):3324–3346CrossRefGoogle Scholar
  16. 16.
    de Sá GF, Malta OL, de Mello Donegá C, Simas AM, Longo RL, Santa-Cruz PA, da Silva EF (2000) Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev 196(1):165–195CrossRefGoogle Scholar
  17. 17.
    Dong DW, Jiang SC, Men YF, Ji XL, Jiang BZ (2000) Nanostructured hybrid organic–inorganic lanthanide complex films produced in situ via a sol-gel approach. Adv Mater 12(9):646–649CrossRefGoogle Scholar
  18. 18.
    Binnemans K, Lenaerts P, Driesen K, Görller-Walrand C (2004) A luminescent tris(2-thenoyltrifluoroacetonato)europium(III) complex covalently linked to a 1,10-phenanthroline-functionalised sol–gel glass. J Mater Chem 14(2):191–195CrossRefGoogle Scholar
  19. 19.
    Sanchez C, Lebeau B (2001) Design and properties of hybrid organic–inorganic nanocomposites for photonics. Mater Res Soc Bull 26:377–387Google Scholar
  20. 20.
    Matthews LR, Knobbe ET (1993) Luminescence behavior of europium complexes in sol–gel derived host materials. Chem Mater 5(12):1697–1700CrossRefGoogle Scholar
  21. 21.
    Franville AC, Zambon D, Mahiou R, Troin Y (2000) Luminescence behavior of sol–gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes. Chem Mater 12(2):428–435CrossRefGoogle Scholar
  22. 22.
    Bredol M, Jüstel T, Gutzov S (2001) Luminescence of sol–gel-derived silica doped with terbium-benzoate complex. Opt Mater 18(3):337–341CrossRefGoogle Scholar
  23. 23.
    Qian GD, Wang MQ, Wang M, Fan XP, Hong ZL (1997) Synthesis in situ of 2,2¢-dipyridyl-Tb(III) complexes in silica gel. J Mater Sci Lett 16(4):322–323CrossRefGoogle Scholar
  24. 24.
    Fu LS, Meng QG, Zhang HJ, Wang SB, Yang KY, Ni JZ (2000) In situ synthesis of terbium-benzoic acid complex in sol–gel derived silica by a two-step sol–gel method. J Phys Chem Solids 61(11):1877–1881CrossRefGoogle Scholar
  25. 25.
    Rosa ILV, Serra OA, Nassar EJ (1997) Luminescence study of the [Eu(bpy)2]3+ supported on Y zeolite. J Lumin 72–74:532–534CrossRefGoogle Scholar
  26. 26.
    Xu QH, Fu LS, Li LS, Zhang HJ, Xu RR (2000) Preparation, characterization and photophysical properties of layered zirconium bis(monohydrogenphosphate) intercalated with rare earth complexes. J Mater Chem 10(11):2532–2536CrossRefGoogle Scholar
  27. 27.
    Xu QH, Li LS, Liu XS, Xu RR (2002) Incorporation of rare-earth complex Eu(TTA)4C5H5NC16H33 into surface-modified Si-MCM-41 and its photophysical properties. Chem Mater 14(2):549–555CrossRefGoogle Scholar
  28. 28.
    Zhang MS, Yin W, Su Q, Zhang HJ (2002) Encapsulation and luminescence of the nanostructured supramolecular material [Eu(Phen)4](NO3)3/(CH3)3Si-MCM-41. Mater Lett 57(4):940–945(6)Google Scholar
  29. 29.
    Fu LS, Zhang HJ, Wang SB, Meng QG, Yang KY, Ni JZ (1999) Preparation and luminescence properties of the ternary europium complex incorporated into an inorganic/polymer matrix by a sol–gel method. J Sol–Gel Sci Technol 15(1):49–55CrossRefGoogle Scholar
  30. 30.
    Lenaerts P, Storms A, Mullens J, Haen JD, Görller-Walrand C, Binnemans K, Driesen K (2005) Thin films of highly luminescent lanthanide complexes covalently linked to an organic–inorganic hybrid material via 2-substituted imidazo[4,5-f]-1,10-phenanthroline groups. Chem Mater 17(20):5194–5201CrossRefGoogle Scholar
  31. 31.
    Bekiari V, Pistolis G, Lianos P (1999) Intensely luminescent materials obtained by combining lanthanide ions, 2,2′′-bipyridine, and poly(ethylene glycol) in various fluid or solid environments. Chem Mater 11(11):3189–3195CrossRefGoogle Scholar
  32. 32.
    Bekiari V, Lianos P (2003) Photophysical studies on terpyridine-Eu3+ complexes in sol–gel nanocomposite materials. J Sol–Gel Sci Technol 26(1–3):887–890CrossRefGoogle Scholar
  33. 33.
    Ji XL, Li B, Jiang SC, Dong DW, Zhang HJ, Jing XB, Jiang BZ (2000) Luminescent properties of organic–inorganic hybrid monoliths containing rare-earth complexes. J Non-Cryst Solids 275(1–2):52–58Google Scholar
  34. 34.
    Nakajima H, Kawano K (2006) Preparation and evaluation of the rare earth doped nanoparticle SiO2–PVP hybrid thin film by sol–gel method. J Alloy Compd 408–412:701–705CrossRefGoogle Scholar
  35. 35.
    Nakagawa K, Amita K, Mizuno H, Inoue Y, Hakushi T (1987) Preparation of some lanthanoid picrates and the behavior of their water of hydration. Bull Chem Soc Jpn 60(6):2037–2040CrossRefGoogle Scholar
  36. 36.
    Parimala S, Gita KN, Kandaswamy M (1998) Synthesis, characterization, electrochemical studies and catecholase activity of a new series of binuclear copper(II) complexes. Polyhedron 17(19):3445–3453CrossRefGoogle Scholar
  37. 37.
    Bruker AXS (1998) SAINT software reference manual. Bruker AXS, Madison, WIGoogle Scholar
  38. 38.
    GM (1997) SHELXS-97 and SHELXL-97. Program for X-ray crystal structure solution and refinement. Gottingen University, GermanyGoogle Scholar
  39. 39.
    Yang L, Yang R (1996) Synthesis and structure of didysprosium complexes with a tetraketone. J Mol Struct 380(1–2):75–84CrossRefGoogle Scholar
  40. 40.
    Yu JB, Zhou L, Zhang HJ, Zheng YX, Li HR, Deng RP, Peng ZP, Li ZF (2005) Efficient electroluminescence from new lanthanide (Eu3+, Sm3+) complexes. Inorg Chem 44(5):1611–1618PubMedCrossRefGoogle Scholar
  41. 41.
    Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum, New YorkGoogle Scholar
  42. 42.
    Avnir D, Kaufman VR, Reisfeld R (1985) Organic fluorescent dyes trapped in silica and silica–titania thin films by the sol-gel method. Photophysical, film and cage properties. J Non-Cryst Solids 74(2–3):395–406CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Li Xu
    • 1
  • Yu-Fei Ma
    • 1
  • Kuan-Zhen Tang
    • 1
  • Yu Tang
    • 1
    Email author
  • Wei-Sheng Liu
    • 1
  • Min-Yu Tan
    • 1
  1. 1.College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic ChemistryLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations